Publications by authors named "Stefan Bommer"

We revisit the fundamental problem of liquid-liquid dewetting and perform a detailed comparison of theoretical predictions based on thin-film models with experimental measurements obtained by atomic force microscopy. Specifically, we consider the dewetting of a liquid polystyrene layer from a liquid polymethyl methacrylate layer, where the thicknesses and the viscosities of both layers are similar. Using experimentally determined system parameters like viscosity and surface tension, an excellent agreement of experimentally and theoretically obtained rim profile shapes are obtained including the liquid-liquid interface and even dewetting rates.

View Article and Find Full Text PDF

In this study, the dynamics of initially stationary liquid drops on smooth and topographic inclined silicon surfaces was investigated experimentally and by lattice Boltzmann simulations. The transient contact angles and the critical angle of inclination were measured systematically for different liquids, drop sizes, and surfaces having different wettability and surface roughness. In general, the critical angle of inclination is larger for hydrophilic than for hydrophobic surfaces, irrespective of the liquids, and increases with increasing contact angle hysteresis and decreasing drop sizes.

View Article and Find Full Text PDF

The morphological path of droplets on a liquid substrate towards equilibrium is investigated experimentally and theoretically. The droplets emerge in the late stage of a dewetting process of short chained polystyrene (PS) dewetting from liquid polymethyl-methacrylate (PMMA). The three-dimensional droplet profiles are obtained experimentally by combining the in situ imaged PS/air interface during equilibration and the ex situ imaged PS/PMMA interface after removal of the PS by a selective solvent.

View Article and Find Full Text PDF

When exposed to a partially wetting liquid, many natural and artificial surfaces equipped with complex topographies display a rich variety of liquid interfacial morphologies. In the present article, we focus on a few simple paradigmatic surface topographies and elaborate on the statics and dynamics of the resulting wetting morphologies. It is demonstrated that the spectrum of wetting morphologies increases with increasing complexity of the groove structure.

View Article and Find Full Text PDF