To overcome the limitations of high reaction temperatures and long reaction times of conventional synthesis routes towards [FeFe] hydrogenase (Hase) mimicking complexes, we introduced a more efficient synthesis route in the presence of aprotic polar co-solvents such as -methyl-2-pyrrolidone (NMP). Versatile (di)thiol or disulfide ligands as well as selenium and tellurium analogues were converted to their corresponding complexes. While both reaction times and temperatures were reduced significantly, yields could be increased.
View Article and Find Full Text PDFCdSe quantum dots (QDs) combined with [FeFe] hydrogenase mimics as molecular catalytic reaction centers based on earth-abundant elements have demonstrated promising activity for photocatalytic hydrogen generation. Direct linking of the [FeFe] hydrogenase mimics to the QD surface is expected to establish a close contact between the [FeFe] hydrogenase mimics and the light-harvesting QDs, supporting the transfer and accumulation of several electrons needed to drive hydrogen evolution. In this work, we report on the functionalization of QDs immobilized in a thin-film architecture on a substrate with [FeFe] hydrogenase mimics by covalent linking via carboxylate groups as the anchoring functionality.
View Article and Find Full Text PDFThe combination of CdSe nanoparticles as photosensitizers with [FeFe]-hydrogenase mimics is known to result in efficient systems for light-driven hydrogen generation with reported turnover numbers in the order of 10-10. Nevertheless, little is known about the details of the light-induced charge-transfer processes. Here, we investigate the time scale of light-induced electron transfer kinetics for a simple model system consisting of CdSe quantum dots (QDs) of 2.
View Article and Find Full Text PDFXylan phenyl carbonate (XPC) derivatives were prepared and characterized comprehensively. By conversion of xylan with phenyl chloroformate either in dipolar aprotic solvents with LiCl or in an ionic liquid, XPC with degrees of substitution (DS) of up to 2.0, i.
View Article and Find Full Text PDF