Publications by authors named "Stefan Behnle"

Article Synopsis
  • Repulsive interactions significantly impact the structure of non-covalently bonded systems.
  • A molecular orbital-based model is proposed to describe how exchange-repulsion contributes to total interaction energy.
  • The model reveals that preferred aggregate structures often show lower exchange repulsion, explaining the intermolecular potentials of specific aggregates like Cl-He and benzene compounds better than traditional electrostatic models.
View Article and Find Full Text PDF

The prediction of molecular properties such as equilibrium structures or vibrational wavenumbers is a routine task in computational chemistry. If very high accuracy is required, however, the use of computationally demanding ab initio wavefunction methods is mandatory. We present property calculations utilizing Retaining the Excitation Degree - Møller-Plesset (REMP) and Orbital Optimized REMP (OO-REMP) hybrid perturbation theories, showing that with the latter approach, very accurate results are obtained at second order in perturbation theory.

View Article and Find Full Text PDF

An accurate description of the electron correlation energy in closed- and open-shell molecules is shown to be obtained by a second-order perturbation theory (PT) termed REMP. REMP is a hybrid of the Retaining the Excitation degree (RE) and the Møller-Plesset (MP) PTs. It performs particularly encouragingly in an orbital-optimized variant (OO-REMP) where the reference wavefunction is given by an unrestricted Slater determinant whose spin orbitals are varied such that the total energy becomes a minimum.

View Article and Find Full Text PDF

We present a perturbation theory (PT) providing second-order energies that reproduce main group chemistry benchmark sets for reaction energies, barrier heights, and atomization energies with mean absolute deviations below 1 kcal mol. The PT is defined as a constrained mixture of the unperturbed Hamiltonians of the Retaining the Excitation degree (RE) and the Møller-Plesset (MP) PTs. The orbitals of the reference wave function, a single unrestricted Slater determinant, are iteratively optimized to minimize the total energy.

View Article and Find Full Text PDF

We propose a new perturbation theoretical approach to the electron correlation energy by choosing the zeroth order Hamiltonian as a linear combination of the corresponding "Retaining the Excitation degree" (RE) and the Møller-Plesset (MP) operators. In order to fulfill Kato cusp conditions, the RE and MP contributions are chosen to sum up to one. 15% ± 5% MP contribution is deduced to be in an optimal range from a fit of the first order REMP wavefunction to near full configuration interaction reference data.

View Article and Find Full Text PDF

We present a comparative study of metal-organic interface properties obtained from dispersion corrected density functional theory calculations based on two different approaches: the periodic slab-supercell technique and cluster models with 32-290 Ag atoms. Fermi smearing and fixing of cluster borders are required to make the cluster calculation feasible and realistic. The considered adsorption structure and energy of a PTCDA molecule on the Ag(110) surface is not well reproduced with clusters containing only two metallic layers.

View Article and Find Full Text PDF

A BN substituted hexabenzotriphenylene (B3N3) closes one C-C-bond upon irradiation with light of 280-400 nm in the presence of iodine to yield a phenanthrene annelated B3N3 tribenzoperylene. Upon hydrolysis a B2N2 dibenzoperylene is obtained.

View Article and Find Full Text PDF