We investigate experimentally and numerically the interaction between a spherical cavitation bubble and a wall-bounded toroidal cavitation bubble. We demonstrate that shock wave focusing following toroidal bubble initiation induces the formation of micro-jets that pierce the spherical bubble in the torus-axis direction away from the surface, strongest in the anti-phase scenario. The velocity of micro-jets is determined by the initial standoff distance of the spherical bubble from the wall and thus from the toroidal bubble, with peak jet velocities approaching 1000m/s.
View Article and Find Full Text PDFCommon validation and verification test cases for compressible flow solvers are only one- or two-dimensional. Such flows, however, are inherently three-dimensional. The provided data contains simulation results of genuine three-dimensional Riemann problems computed with the open-source compressible flow solver ALPACA.
View Article and Find Full Text PDFWe reveal for the first time by experiments that within a narrow parameter regime, two cavitation bubbles with identical energy generated in antiphase develop a supersonic jet. High-resolution numerical simulation shows a mechanism for jet amplification based on toroidal shock wave and bubble necking interaction. The microjet reaches velocities in excess of 1000 m s^{-1}.
View Article and Find Full Text PDFWe apply a standard nonequilibrium dynamics microscopic analysis of transport coefficients to the smoothed dissipative particle dynamics (SDPD) method of steady-shear flow conditions. Extending the research of Ellero et al. [Phys.
View Article and Find Full Text PDF