Publications by authors named "Stefan A Buehler"

We generated a new Climate Data Record (CDR) of Upper Tropospheric Humidity (UTH) based on observations from the microwave sounders Special Sensor Microwave Temperature - 2 (SSMT-2), Advanced Microwave Sounding Unit - B (AMSU-B) and Microwave Humidity Sounder (MHS). The data record covers the time period between 1994 and 2017 and provides monthly mean 183.31 ± 1 GHz brightness temperatures and derived UTH along with estimates of measurement uncertainty on a 1° × 1° latitude-longitude grid covering the tropical region (30° S to 30° N).

View Article and Find Full Text PDF

OceanRAIN-the Ocean Rainfall And Ice-phase precipitation measurement Network-provides in-situ along-track shipboard data of precipitation, evaporation and the resulting freshwater flux at 1-min resolution over the global oceans from June 2010 to April 2017. More than 6.83 million minutes with 75 parameters from 8 ships cover all routinely measured atmospheric and oceanographic state variables along with those required to derive the turbulent heat fluxes.

View Article and Find Full Text PDF

A deeper understanding of how clouds will respond to a warming climate is one of the outstanding challenges in climate science. Uncertainties in the response of clouds, and particularly shallow clouds, have been identified as the dominant source of the discrepancy in model estimates of equilibrium climate sensitivity. As the community gains a deeper understanding of the many processes involved, there is a growing appreciation of the critical role played by fluctuations in water vapor and the coupling of water vapor and atmospheric circulations.

View Article and Find Full Text PDF
Article Synopsis
  • Radiation parameterizations in General Circulation Models (GCMs) have improved accuracy compared to previous models.
  • There are significant errors in the estimates of the radiative forcing from quadrupling CO2, particularly with solar radiation.
  • These errors vary based on atmospheric conditions, making it difficult to determine a precise global mean error.
View Article and Find Full Text PDF

A recent development in ground-based remote sensing of atmospheric constituents by UV-visible absorption measurements of scattered light is the simultaneous use of several horizon viewing directions in addition to the traditional zenith-sky pointing. The different light paths through the atmosphere enable the vertical distribution of some atmospheric absorbers, such as NO2, BrO, or O3, to be retrieved. This approach has recently been implemented on an airborne platform.

View Article and Find Full Text PDF