Publications by authors named "Stef Baas"

This paper introduces mathematical models that support dynamic fair balancing of COVID-19 patients over hospitals in a region and across regions. Patient flow is captured in an infinite server queueing network. The dynamic fair balancing model within a region is a load balancing model incorporating a forecast of the bed occupancy, while across regions, it is a stochastic program taking into account scenarios of the future bed surpluses or shortages.

View Article and Find Full Text PDF

This paper presents a mathematical model that provides a real-time forecast of the number of COVID-19 patients admitted to the ward and the Intensive Care Unit (ICU) of a hospital based on the predicted inflow of patients, their Length of Stay (LoS) in both the ward and the ICU as well as transfer of patients between the ward and the ICU. The data required for this forecast is obtained directly from the hospital's data warehouse. The resulting algorithm is tested on data from the first COVID-19 peak in the Netherlands, showing that the forecast is very accurate.

View Article and Find Full Text PDF