Publications by authors named "Steevenson Nelson"

Cohesin extrusion is thought to play a central role in establishing the architecture of mammalian genomes. However, extrusion has not been visualized in vivo, and thus, its functional impact and energetics are unknown. Using ultra-deep Hi-C, we show that loop domains form by a process that requires cohesin ATPases.

View Article and Find Full Text PDF

50 years ago, Vincent Allfrey and colleagues discovered that lymphocyte activation triggers massive acetylation of chromatin. However, the molecular mechanisms driving epigenetic accessibility are still unknown. We here show that stimulated lymphocytes decondense chromatin by three differentially regulated steps.

View Article and Find Full Text PDF

DNA in cells is predominantly B-form double helix. Though certain DNA sequences in vitro may fold into other structures, such as triplex, left-handed Z form, or quadruplex DNA, the stability and prevalence of these structures in vivo are not known. Here, using computational analysis of sequence motifs, RNA polymerase II binding data, and genome-wide potassium permanganate-dependent nuclease footprinting data, we map thousands of putative non-B DNA sites at high resolution in mouse B cells.

View Article and Find Full Text PDF

Recent genome-wide analyses have uncovered a high accumulation of RNA polymerase II (Pol II) at the 5' end of genes. This elevated Pol II presence at promoters, referred to here as Poll II poising, is mainly (but not exclusively) attributed to temporal pausing of transcription during early elongation which, in turn, has been proposed to be a regulatory step for processes that need to be activated "on demand". Yet, the full genome-wide regulatory role of Pol II poising is yet to be delineated.

View Article and Find Full Text PDF

The antibody gene mutator activation-induced cytidine deaminase (AID) promiscuously damages oncogenes, leading to chromosomal translocations and tumorigenesis. Why nonimmunoglobulin loci are susceptible to AID activity is unknown. Here, we study AID-mediated lesions in the context of nuclear architecture and the B cell regulome.

View Article and Find Full Text PDF

A key finding of the ENCODE project is that the enhancer landscape of mammalian cells undergoes marked alterations during ontogeny. However, the nature and extent of these changes are unclear. As part of the NIH Mouse Regulome Project, we here combined DNaseI hypersensitivity, ChIP-seq, and ChIA-PET technologies to map the promoter-enhancer interactomes of pluripotent ES cells and differentiated B lymphocytes.

View Article and Find Full Text PDF

The "CTCF code" hypothesis posits that CTCF pleiotropic functions are driven by recognition of diverse sequences through combinatorial use of its 11 zinc fingers (ZFs). This model, however, is supported by in vitro binding studies of a limited number of sequences. To study CTCF multivalency in vivo, we define ZF binding requirements at ∼50,000 genomic sites in primary lymphocytes.

View Article and Find Full Text PDF

Lymphocyte activation is initiated by a global increase in messenger RNA synthesis. However, the mechanisms driving transcriptome amplification during the immune response are unknown. By monitoring single-stranded DNA genome wide, we show that the genome of naive cells is poised for rapid activation.

View Article and Find Full Text PDF

Molecular clone technology has proven to be a powerful tool for investigating the life cycle of flaviviruses, their interactions with the host, and vaccine development. Despite the demonstrated utility of existing molecular clone strategies, the feasibility of employing these existing approaches in large-scale mutagenesis studies is limited by the technical challenges of manipulating relatively large molecular clone plasmids that can be quite unstable when propagated in bacteria. We have developed a novel strategy that provides an extremely rapid approach for the introduction of mutations into the structural genes of West Nile virus (WNV).

View Article and Find Full Text PDF

Background: West Nile virus (WNV) is a flavivirus that causes meningitis and encephalitis. There are no licensed vaccines to prevent WNV in humans. The safety and immunogenicity of a first-generation WNV DNA vaccine was demonstrated in a clinical trial and a similar DNA vaccine has been licensed for use in horses.

View Article and Find Full Text PDF

Virus neutralization is governed by the number of antibodies that bind a virion during the cellular entry process. Cellular and serum factors that interact with antibodies have the potential to modulate neutralization potency. Although the addition of serum complement can increase the neutralizing activity of antiviral antibodies in vitro, the mechanism and significance of this augmented potency in vivo remain uncertain.

View Article and Find Full Text PDF

Histidine residues have been hypothesized to function as sensors of environmental pH that can trigger the activity of viral fusion proteins. We investigated a requirement for histidine residues in the envelope (E) protein of West Nile virus during pH-dependent entry into cells. Each histidine was individually replaced with a nonionizable amino acid and tested functionally.

View Article and Find Full Text PDF

West Nile virus (WNV) is a neurotropic flavivirus that is now a primary cause of epidemic encephalitis in North America. Studies of mice have demonstrated that the humoral immune response against WNV limits primary infection and protects against a secondary challenge. The most-potent neutralizing mouse monoclonal antibodies (MAbs) recognize an epitope on the lateral ridge of domain III (DIII-lr) of the envelope (E) protein.

View Article and Find Full Text PDF

The classic publication by Caspar and Klug in 1962 [Physical principles in the construction of regular viruses. Cold Spring Harbor Symp. Quant.

View Article and Find Full Text PDF

Dengue virus (DENV) is a mosquito-borne flavivirus responsible for 50 to 100 million human infections each year, highlighting the need for a safe and effective vaccine. In this study, we describe the production of pseudoinfectious DENV reporter virus particles (RVPs) using two different genetic complementation approaches, including the creation of cell lines that release reporter viruses in an inducible fashion. In contrast to studies with West Nile virus (WNV), production of infectious DENV RVPs was temperature-dependent; the yield of infectious DENV RVPs at 37 degrees C is significantly reduced in comparison to experiments conducted at lower temperatures or with WNV.

View Article and Find Full Text PDF

West Nile virions incorporate 180 envelope (E) proteins that orchestrate the process of virus entry and are the primary target of neutralizing antibodies. The E proteins of newly synthesized West Nile virus (WNV) are organized into trimeric spikes composed of pre-membrane (prM) and E protein heterodimers. During egress, immature virions undergo a protease-mediated cleavage of prM that results in a reorganization of E protein into the pseudo-icosahedral arrangement characteristic of mature virions.

View Article and Find Full Text PDF

Antibody binding to the icosahedral arrangement of envelope proteins on the surface of flaviviruses can result in neutralization or enhancement of infection. We evaluated how many antibodies must bind to a given epitope on West Nile virus (WNV) to achieve neutralization. The most potent monoclonal antibodies (mAbs) block infection at concentrations that result in low occupancy of accessible sites on the virion, with neutralization occurring when as few as 30 of 180 envelope proteins are bound.

View Article and Find Full Text PDF

Sindbis is an Alphavirus capable of infecting and replicating in both vertebrate and invertebrate hosts. Mature Sindbis virus particles consist of an inner capsid surrounded by a host-derived lipid bilayer, which in turn is surrounded by a protein shell consisting of the E1 and E2 glycoproteins. While a homolog of the E1 glycoprotein has been structurally characterized, the amount of structural data on the E2 glycoprotein is considerably less.

View Article and Find Full Text PDF

Sindbis virus particles are composed of three structural proteins (Capsid/E2/E1). In the mature virion the E1 glycoprotein is organized in a highly constrained, energy-rich conformation. It is hypothesized that this energy is utilized to drive events that deliver the viral genome to the cytoplasm of a host cell.

View Article and Find Full Text PDF

Analysis and purification of specific PCR products from PCR reactions can be problematic due to several issues relating to amplification and low product yield. The use of HPLC as a preparative tool in PCR product analysis is common but has not replaced traditional electrophoretic techniques for purifying DNA to be used in subsequent experiments. Gel purification of PCR products can result in a net loss greater than 50% of the starting DNA amount.

View Article and Find Full Text PDF