Behavioural analysis has been attracting significant attention as a broad indicator of sub-lethal toxicity and has secured a place as an important subdiscipline in ecotoxicology. Among the most notable characteristics of behavioural research, compared to other established approaches in sub-lethal ecotoxicology (e.g.
View Article and Find Full Text PDFThe scope of this study was to apply advances in materials science, specifically the use of organosilicate nanoparticles as a high surface area platform for passive sampling of chemicals or pre-concentration for active sensing in multiple-phase complex environmental media. We have developed a novel nanoporous organosilicate (NPO) film as an extraction phase and proof of concept for application in adsorbing hydrophobic compounds in water and sediment. We characterized the NPO film properties and provided optimization for synthesis and coatings in order to apply the technology in environmental media.
View Article and Find Full Text PDFEffect concentrations of ammonia, nickel, sodium chloride, and potassium chloride from short-term 7-day tests were compared to those from standard chronic 28-day toxicity tests with juvenile mussels (fatmucket, Lampsilis siliquoidea) to evaluate the sensitivities of the 7-day tests. The effect concentrations for nickel (59 µg Ni/L), chloride (316-519 mg Cl/L, a range from multiple tests), and potassium (15 mg K/L) obtained from the 7-day tests were within a range of effect concentrations for each corresponding chemical in the 28-day tests (41-91 µg Ni/L, 251->676 mg Cl/L, 15-23 mg K/L), whereas the 7-day ammonia effect concentration (0.40 mg/L total ammonia nitrogen; TAN) was up to 3.
View Article and Find Full Text PDFThe ASTM International standard test method for freshwater mussels (E2455-13) recommends 4-week toxicity testing with juveniles to evaluate chronic effects on survival and growth. However, concerns remain that the method may not adequately address the sensitivity of mussels to longer term exposures (>4 weeks), particularly in relation to potential reproductive impairments. No standard method directly evaluates toxicant effects on mussel reproduction.
View Article and Find Full Text PDFSci Total Environ
December 2023
Although freshwater mussels are imperiled and identified as key conservation priorities, limited bioaccumulation information is available on these organisms for contaminants of emerging concern. In the present study we investigated the bioaccumulation of per- and polyfluoroalkyl substances (PFAS) in the model freshwater pond mussel Sagittunio subrostratus because mussels provide important ecosystem services and are important components of aquatic systems where PFAS occur. In the present study we selected four representative perfluorinated carboxylic acids and sulfonic acids, then determined the bioaccumulation kinetics of freshwater mussels in a controlled laboratory study.
View Article and Find Full Text PDFAqueous film-forming foams historically were used during fire training activities on Joint Base Cape Cod, Massachusetts, and created an extensive per- and polyfluoroalkyl substances (PFAS) groundwater contamination plume. The potential for PFAS bioconcentration from exposure to the contaminated groundwater, which discharges to surface water bodies, was assessed with mobile-laboratory experiments using groundwater from the contamination plume and a nearby reference location. The on-site continuous-flow 21-day exposures used male and female fathead minnows, freshwater mussels, polar organic chemical integrative samplers (POCIS), and polyethylene tube samplers (PETS) to evaluate biotic and abiotic uptake.
View Article and Find Full Text PDFElevated concentrations of potassium (K) often occur in effluents from wastewater treatment plants, oil and gas production operations, mineral extraction processes, and other anthropogenic sources. Previous studies have demonstrated that freshwater mussels are highly sensitive to K in acute and chronic exposures, and that acute toxicity of K decreases with increasing water hardness. However, little is known about the influence of hardness on the chronic toxicity of K.
View Article and Find Full Text PDFBioaccumulation of ionizable pharmaceuticals has been increasingly studied, with most reported aquatic tissue concentrations in field or laboratory experiments being from fish. However, higher levels of antidepressants have been observed in bivalves compared with fish from effluent-dominated and dependent surface waters. Such observations may be important for biodiversity because approximately 70% of freshwater bivalves in North America are considered to be vulnerable to extinction.
View Article and Find Full Text PDFStandard bioaccumulation tests are commonly conducted using Macoma nasuta (clam), and Alitta virens (polychaete) for marine tests, and Lumbriculus variegatus (an oligochaete) for freshwater tests. Because the interlaboratory variability associated with these tests is unknown, four experienced laboratories conducted standard 28-day bioaccumulation tests with the above species using sediments contaminated with polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs). Chemical analysis of tissue samples was performed by a single laboratory.
View Article and Find Full Text PDFEnviron Toxicol Chem
December 2021
The US Environmental Protection Agency's short-term freshwater effluent test methods include a fish (Pimephales promelas), a cladoceran (Ceriodaphnia dubia), and a green alga (Raphidocelis subcapitata). There is a recognized need for additional taxa to accompany the three standard species for effluent testing. An appropriate additional taxon is unionid mussels because mussels are widely distributed, live burrowed in sediment and filter particles from the water column for food, and exhibit high sensitivity to a variety of contaminants.
View Article and Find Full Text PDFFreshwater mussels are one of the most imperiled groups of animals in the world and are among the most sensitive species to a variety of chemicals. However, little is known about the sensitivity of freshwater mussels to wastewater effluents. The objectives of the present study were to (1) assess the toxicity of a permitted effluent, which entered the Deep Fork River, Oklahoma (USA), to a unionid mussel (Lampsilis siliquoidea) and to two standard test species (cladoceran Ceriodaphnia dubia; and fathead minnow Pimephales promelas) in short-term 7-day effluent tests; (2) evaluate the relative sensitivities of the three species to potassium (K), an elevated major ion in the effluent, using 7-day toxicity tests with KCl spiked into a Deep Fork River upstream reference water; (3) determine the potential influences of background water characteristics on the acute K toxicity to the mussel (96-h exposures) and cladoceran (48-h exposure) in four reconstituted waters that mimicked the hardness and ionic composition ranges of the Deep Fork River; and (4) determine the potential influence of temperature on acute K toxicity to the mussel.
View Article and Find Full Text PDFWe studied biotic ligand model (BLM) predictions of the toxicity of nickel (Ni) and zinc (Zn) in natural waters from Illinois and Minnesota, USA, which had combinations of pH, hardness, and dissolved organic carbon (DOC) more extreme than 99.7% of waters in a nationwide database. We conducted 7-day chronic tests with Ceriodaphnia dubia and 96-hour acute and 14-day chronic tests with Neocloeon triangulifer and estimated median lethal concentrations and 20% effect concentrations for both species.
View Article and Find Full Text PDFThe potential for delayed mortality following short-term episodic pollution events was evaluated by exposing cladocerans (Ceriodaphnia dubia) and rainbow trout (Oncorhynchus mykiss) to zinc (Zn) in various 1- to 48-h and 1- to 96-h exposures, respectively, followed by transferring the exposed organisms to clean water for up to 47 h for C. dubia and up to 95 h for trout for additional observation. For C.
View Article and Find Full Text PDFFor decades, we have known that chemicals affect human and wildlife behavior. Moreover, due to recent technological and computational advances, scientists are now increasingly aware that a wide variety of contaminants and other environmental stressors adversely affect organismal behavior and subsequent ecological outcomes in terrestrial and aquatic ecosystems. There is also a groundswell of concern that regulatory ecotoxicology does not adequately consider behavior, primarily due to a lack of standardized toxicity methods.
View Article and Find Full Text PDFPer- and poly-fluoroalkyl substances (PFAS) encompass a large, heterogenous group of chemicals of potential concern to human health and the environment. Based on information for a few relatively well-understood PFAS such as perfluorooctane sulfonate and perfluorooctanoate, there is ample basis to suspect that at least a subset can be considered persistent, bioaccumulative, and/or toxic. However, data suitable for determining risks in either prospective or retrospective assessments are lacking for the majority of PFAS.
View Article and Find Full Text PDFThe US Environmental Protection Agency (USEPA) is reviewing the protectiveness of the national ambient water quality criteria (WQC) for nickel (Ni) and zinc (Zn) and compiling toxicity databases to update the WQC. An amphipod (Hyalella azteca) and a unionid mussel (Lampsilis siliquoidea) have shown high sensitivity to Ni and Zn in previous studies. However, there remained uncertainties regarding the influence of test duration (48 vs 96 h) and the presence and absence of food in acute exposures with the amphipod, and there were also concerns about poor control of amphipod growth and reproduction and mussel growth in chronic exposures.
View Article and Find Full Text PDFElevated nitrate (NO ) and sulfate (SO ) in surface water are of global concern, and studies are needed to generate toxicity data to develop environmental guideline values for NO and SO . The present study was designed to fill existing gaps in toxicity databases by determining the acute and/or chronic toxicity of NO (tested as NaNO ) to a unionid mussel (Lampsilis siliquoidea), a midge (Chironomus dilutus), a fish (rainbow trout, Oncorhynchus mykiss), and 2 amphibians (Hyla versicolor and Lithobates sylvaticus), and to determine the acute and/or chronic toxicity of SO (tested as Na SO ) to 2 unionid mussels (L. siliquoidea and Villosa iris), an amphipod (Hyalella azteca), and 2 fish species (fathead minnow, Pimephales promelas and O.
View Article and Find Full Text PDFThe Grand Calumet River (GCR), located in northern Indiana, is contaminated due to a wide range of historical industrial activities. This study was conducted to determine the influence of sediment remediation within the GCR on concentrations of chemical contaminants and toxicity to sediment-dwelling organisms. Between 2005 and 2016, sediments with high concentrations of metals and toxic organic compounds were remediated through a combination of removal, addition of activated carbon and organoclay amendments, and capping with sand or relatively uncontaminated sediment.
View Article and Find Full Text PDFBull Environ Contam Toxicol
March 2020
Guidelines for developing water quality standards allow U.S. states to exclude toxicity data for the family Salmonidae (trout and salmon) when deriving guidelines for warm-water habitats.
View Article and Find Full Text PDFAnticipating, identifying, and prioritizing strategic needs represent essential activities by research organizations. Decided benefits emerge when these pursuits engage globally important environment and health goals, including the United Nations Sustainable Development Goals. To this end, horizon scanning efforts can facilitate identification of specific research needs to address grand challenges.
View Article and Find Full Text PDFProduced water (PW) from oil and gas extraction processes has been shown to contain elevated concentrations of major ions. The objective of this study was to determine the potential effects of elevated major ions in PW-contaminated surface water on a fish (fathead minnow, Pimephales promelas) and a unionid mussel (fatmucket, Lampsilis siliquoidea) in short-term (7-day) exposures. The test organisms were exposed in 3 reconstituted waters formulated with 1, 2, and 4 times the major ions measured at a PW-contaminated stream site 1 month after a PW spill from an oil production wastewater pipeline in the Williston Basin, North Dakota.
View Article and Find Full Text PDFSediments from the Upper Columbia River, Washington, USA, are contaminated with metals from smelting operations. We conducted short-term and long-term tests with the midge Chironomus dilutus and the amphipod Hyalella azteca and short-term tests with the freshwater mussel Lampsilis siliquoidea with 54 sediments from the Upper Columbia River to characterize thresholds for toxicity of metals to benthic invertebrates. Test sediments were screened for toxicity by comparisons with low-metal reference sediments.
View Article and Find Full Text PDFFreshwater mussels are generally underrepresented in toxicity databases used to derive water quality criteria, especially for long-term exposures. Multiple tests were conducted to determine the chronic toxicity of sodium chloride (NaCl) or potassium chloride (KCl) to a unionid mussel (fatmucket, Lampsilis siliquoidea). Initially, a 4-wk NaCl test and a 4-wk KCl test were conducted starting with 2-mo-old mussels in water exposures with and without a thin layer of sand substrate.
View Article and Find Full Text PDF