West Nile virus (WNV) is amplified in an enzootic cycle involving birds as amplifying hosts. Because they do not develop high levels of viremia, humans and horses are considered to be dead-end hosts. Mosquitoes, especially from the genus, are vectors responsible for transmission between hosts.
View Article and Find Full Text PDFThe impact of mosquito-borne diseases on human and veterinary health is being exacerbated by rapid environmental changes caused mainly by changing climatic patterns and globalization. To gain insight into mosquito-borne virus circulation from two counties in eastern and southeastern Romania, we have used a combination of sampling methods in natural, urban and peri-urban sites. The presence of 37 mosquito-borne viruses in 16,827 pooled mosquitoes was analyzed using a high-throughput microfluidic real-time PCR assay.
View Article and Find Full Text PDFSince 2015, annual West Nile virus (WNV) outbreaks of varying intensities have been reported in France. Recent intensification of enzootic WNV circulation was observed in the South of France with most horse cases detected in 2015 ( = 49), 2018 ( = 13), and 2019 ( = 13). A WNV lineage 1 strain was isolated from a horse suffering from West Nile neuro-invasive disease (WNND) during the 2015 episode in the Camargue area.
View Article and Find Full Text PDFNew Caledonia and French Polynesia are areas in which arboviruses circulate extensively. A large serological survey among horses from New Caledonia and French Polynesia was carried out to investigate the seroprevalence of flaviviruses in the horse population. Here, 293 equine sera samples were screened for flaviviruses using a competitive enzyme-linked immunosorbent assay (cELISA).
View Article and Find Full Text PDFWest Nile Fever is a zoonotic disease caused by a mosquito-borne flavivirus, WNV. By its clinical sensitivity to the disease, the horse is a useful sentinel of infection. Because of the virus' low-level, short-term viraemia in horses, the primary tools used to diagnose WNV are serological tests.
View Article and Find Full Text PDFBackground: During the last decade, the spread of many flaviviruses (Genus Flavivirus) has been reported, representing an emerging threat for both animal and human health. To further study utility of wild ruminant samples in West Nile virus (WNV) surveillance, we assessed spatio-temporal trends and factors associated with WNV and cross-reacting flaviviruses exposure, particularly Usutu virus (USUV) and Meaban virus (MBV), in wild ruminants in Spain. Serum samples from 4693 wild ruminants, including 3073 free-living red deer (Cervus elaphus), 201 fallow deer (Dama dama), 125 mouflon (Ovis aries musimon), 32 roe deer (Capreolus capreolus) and 1262 farmed red deer collected in 2003-2014, were screened for WNV and antigenically-related flavivirus antibodies using a blocking ELISA (bELISA).
View Article and Find Full Text PDFWest Nile virus (WNV), Japanese encephalitis virus (JEV), and tick-borne encephalitis virus (TBEV) are flaviviruses responsible for severe neuroinvasive infections in humans and horses. The confirmation of flavivirus infections is mostly based on rapid serological tests such as enzyme-linked immunosorbent assays (ELISAs). These tests suffer from poor specificity, mainly due to antigenic cross-reactivity among flavivirus members.
View Article and Find Full Text PDFWest Nile Virus (WNV) is a zoonotic mosquito-transmitted flavivirus that can infect and cause disease in mammals including humans. Our study aimed at developing a WNV vectored vaccine based on a fish Novirhabdovirus, the Viral Hemorrhagic Septicemia virus (VHSV). VHSV replicates at temperatures lower than 20°C and is naturally inactivated at higher temperatures.
View Article and Find Full Text PDFSome strains of West Nile virus (WNV) are neuroinvasive and may induce fatal encephalitis/meningitis in a variety of animal species including humans. Whether, however, there is a strain-specific signature in the brain is as yet unknown. Here we investigated the neuropathogenesis induced by two phylogenetically distant WNV strains of lineage 1, WNV(IS98) and WNV(KUN35 911).
View Article and Find Full Text PDFWest Nile virus (WNV) is a neurotropic flavivirus that cycles between mosquitoes and birds but that can also infect humans, horses, and other vertebrate animals. In most humans, WNV infection remains subclinical. However, 20%-40% of those infected may develop WNV disease, with symptoms ranging from fever to meningoencephalitis.
View Article and Find Full Text PDFIn recent years, the number of West Nile virus (WNV) cases reported in horses and humans has increased dramatically throughout the Mediterranean basin. Furthermore, the emergence of Usutu virus (USUV) in Austria in 2001, and its subsequent expansion to Hungary, Spain, Italy, Switzerland, the United Kingdom, and Germany, has given added cause for concern regarding the impact of the spread of flaviviruses on human and animal health in western Europe. Despite frequent detection of WNV and USUV cases in neighboring countries, no case of WNV has been detected in France since 2006 and USUV has never been reported.
View Article and Find Full Text PDFInfectious clones of West Nile virus (WNV) have previously been generated and used to decipher the role of viral proteins in WNV virulence. The majority of molecular clones obtained to date have been derived from North American, Australian, or African isolates. Here, we describe the construction of an infectious cDNA clone of a Mediterranean WNV strain, IS-98-ST1.
View Article and Find Full Text PDF