Nonlinear dynamic simulations of mechanical resonators have been facilitated by the advent of computational techniques that generate nonlinear reduced order models (ROMs) using the finite element (FE) method. However, designing devices with specific nonlinear characteristics remains inefficient since it requires manual adjustment of the design parameters and can result in suboptimal designs. Here, we integrate an FE-based nonlinear ROM technique with a derivative-free optimization algorithm to enable the design of nonlinear mechanical resonators.
View Article and Find Full Text PDFMost microphones detect sound-pressure-induced motion of a membrane. In contrast, we introduce a microphone that operates by monitoring sound-pressure-induced modulation of the air compressibility. By driving a graphene membrane at resonance, the gas, that is trapped in a squeeze-film beneath it, is compressed at high frequency.
View Article and Find Full Text PDFUnlabelled: The ultimate isolation offered by levitation provides new opportunities for studying fundamental science and realizing ultra-sensitive floating sensors. Among different levitation schemes, diamagnetic levitation is attractive because it allows stable levitation at room temperature without a continuous power supply. While the dynamics of diamagnetically levitating objects in the linear regime are well studied, their nonlinear dynamics have received little attention.
View Article and Find Full Text PDFHigh-aspect-ratio mechanical resonators are pivotal in precision sensing, from macroscopic gravitational wave detectors to nanoscale acoustics. However, fabrication challenges and high computational costs have limited the length-to-thickness ratio of these devices, leaving a largely unexplored regime in nano-engineering. We present nanomechanical resonators that extend centimeters in length yet retain nanometer thickness.
View Article and Find Full Text PDFSince the performance of micro-electro-mechanical system (MEMS)-based microphones is approaching fundamental physical, design, and material limits, it has become challenging to improve them. Several works have demonstrated graphene's suitability as a microphone diaphragm. The potential for achieving smaller, more sensitive, and scalable on-chip MEMS microphones is yet to be determined.
View Article and Find Full Text PDFThe temperature dependent order parameter provides important information on the nature of magnetism. Using traditional methods to study this parameter in two-dimensional (2D) magnets remains difficult, however, particularly for insulating antiferromagnetic (AF) compounds. Here, we show that its temperature dependence in AF MPS (M(II) = Fe, Co, Ni) can be probed via the anisotropy in the resonance frequency of rectangular membranes, mediated by a combination of anisotropic magnetostriction and spontaneous staggered magnetization.
View Article and Find Full Text PDFBacteria that are resistant to antibiotics present an increasing burden on healthcare. To address this emerging crisis, novel rapid antibiotic susceptibility testing (AST) methods are eagerly needed. Here, we present an optical AST technique that can determine the bacterial viability within 1 h down to a resolution of single bacteria.
View Article and Find Full Text PDFMagnetostrictive coupling has recently attracted interest as a sensitive method for studying magnetism in two-dimensional (2D) materials by mechanical means. However, its application in high-frequency magnetic actuators and transducers requires rapid modulation of the magnetic order, which is difficult to achieve with external magnets, especially when dealing with antiferromagnets. Here, we optothermally modulate the magnetization in antiferromagnetic 2D material membranes of metal phosphor trisulfides (MPS), to induce a large high-frequency magnetostrictive driving force.
View Article and Find Full Text PDFMicrophones exploit the motion of suspended membranes to detect sound waves. Since the microphone performance can be improved by reducing the thickness and mass of its sensing membrane, graphene-based microphones are expected to outperform state-of-the-art microelectromechanical (MEMS) microphones and allow further miniaturization of the device. Here, we present a laser vibrometry study of the acoustic response of suspended multilayer graphene membranes for microphone applications.
View Article and Find Full Text PDFThe inherent properties of 2D materials-light mass, high out-of-plane flexibility, and large surface area-promise great potential for precise and accurate nanomechanical mass sensing, but their application is often hampered by surface contamination. Here we demonstrate a tri-layer graphene nanomechanical resonant mass sensor with sub-attogram resolution at room temperature, fabricated by a bottom-up process. We found that Joule-heating is effective in cleaning the graphene membrane surface, which results in a large improvement in the stability of the resonance frequency.
View Article and Find Full Text PDFAlthough it is well known that plants emit acoustic pulses under drought stress, the exact origin of the waveform of these ultrasound pulses has remained elusive. Here, we present evidence for a correlation between the characteristics of the waveform of these pulses and the dimensions of xylem conduits in plants. Using a model that relates the resonant vibrations of a vessel to its dimension and viscoelasticity, we extract the xylem radii from the waveforms of ultrasound pulses and show that these are correlated and in good agreement with optical microscopy.
View Article and Find Full Text PDFLevitation offers extreme isolation of mechanical systems from their environment, while enabling unconstrained high-precision translation and rotation of objects. Diamagnetic levitation is one of the most attractive levitation schemes because it allows stable levitation at room temperature without the need for a continuous power supply. However, dissipation by eddy currents in conventional diamagnetic materials significantly limits the application potential of diamagnetically levitating systems.
View Article and Find Full Text PDFNonlinearities are inherent to the dynamics of two-dimensional materials. Phenomena-like intermodal coupling already arise at amplitudes of only a few nanometers, and a range of unexplored effects still awaits to be harnessed. Here, we demonstrate a route for generating mechanical frequency combs in graphene resonators undergoing symmetry-breaking forces.
View Article and Find Full Text PDFSince the transfer process of graphene from a dedicated growth substrate to another substrate is prone to induce defects and contamination and can increase costs, there is a large interest in methods for growing graphene directly on silicon wafers. Here, we demonstrate the direct CVD growth of graphene on a SiO layer on a silicon wafer by employing a Pt thin film as catalyst. We pattern the platinum film, after which a CVD graphene layer is grown at the interface between the SiO and the Pt.
View Article and Find Full Text PDFDuring the past decades micro-electromechanical microphones have largely taken over the market for portable devices, being produced in volumes of billions yearly. Because performance of current devices is near the physical limits, further miniaturization and improvement of microphones for mobile devices poses a major challenge that requires breakthrough device concepts, geometries, and materials. Graphene is an attractive material for enabling these breakthroughs due to its flexibility, strength, nanometer thinness, and high electrical conductivity.
View Article and Find Full Text PDFMotion is a key characteristic of every form of life. Even at the microscale, it has been reported that colonies of bacteria can generate nanomotion on mechanical cantilevers, but the origin of these nanoscale vibrations has remained unresolved. Here, we present a new technique using drums made of ultrathin bilayer graphene, where the nanomotion of single bacteria can be measured in its aqueous growth environment.
View Article and Find Full Text PDFAlthough 2D materials hold great potential for next-generation pressure sensors, recent studies revealed that gases permeate along the membrane-surface interface, necessitating additional sealing procedures. In this work, we demonstrate the use of free-standing complex oxides as self-sealing membranes that allow the reference cavity beneath to be sealed by a simple anneal. To test the hermeticity, we study the gas permeation time constants in nanomechanical resonators made from SrRuO and SrTiO membranes suspended over SiO/Si cavities which show an improvement up to 4 orders of magnitude in the permeation time constant after annealing the devices.
View Article and Find Full Text PDFCoupled nanomechanical resonators made of two-dimensional materials are promising for processing information with mechanical modes. However, the challenge for these systems is to control the coupling. Here, we demonstrate strong coupling of motion between two suspended membranes of the magnetic 2D material FePS.
View Article and Find Full Text PDFThrough rational chemical design, and thanks to the hybrid nature of metal-organic frameworks (MOFs), it is possible to prepare molecule-based 2D magnetic materials stable at ambient conditions. Here, we illustrate the versatility of this approach by changing both the metallic nodes and the ligands in a family of layered MOFs that allows the tuning of their magnetic properties. Specifically, the reaction of benzimidazole-type ligands with different metal centers (M = Fe, Co, Mn, Zn) in a solvent-free synthesis produces a family of crystalline materials, denoted as MUV-1(M), which order antiferromagnetically with critical temperatures that depend on M.
View Article and Find Full Text PDFFrom ultrasensitive detectors of fundamental forces to quantum networks and sensors, mechanical resonators are enabling next-generation technologies to operate in room-temperature environments. Currently, silicon nitride nanoresonators stand as a leading microchip platform in these advances by allowing for mechanical resonators whose motion is remarkably isolated from ambient thermal noise. However, to date, human intuition has remained the driving force behind design processes.
View Article and Find Full Text PDFThe high flexibility, impermeability and strength of graphene membranes are key properties that can enable the next generation of nanomechanical sensors. However, for capacitive pressure sensors, the sensitivity offered by a single suspended graphene membrane is too small to compete with commercial sensors. Here, we realize highly sensitive capacitive pressure sensors consisting of arrays of nearly ten thousand small, freestanding double-layer graphene membranes.
View Article and Find Full Text PDFThe resonance frequency of membranes depends on the gas pressure due to the squeeze-film effect, induced by the compression of a thin gas film that is trapped underneath the resonator by the high-frequency motion. This effect is particularly large in low-mass graphene membranes, which makes them promising candidates for pressure-sensing applications. Here, we study the squeeze-film effect in single-layer graphene resonators and find that their resonance frequency is lower than expected from models assuming ideal compression.
View Article and Find Full Text PDFVan der Waals magnets provide an ideal playground to explore the fundamentals of low-dimensional magnetism and open opportunities for ultrathin spin-processing devices. The Mermin-Wagner theorem dictates that as in reduced dimensions isotropic spin interactions cannot retain long-range correlations, the long-range spin order is stabilized by magnetic anisotropy. Here, using ultrashort pulses of light, we control magnetic anisotropy in the two-dimensional van der Waals antiferromagnet NiPS Tuning the photon energy in resonance with an orbital transition between crystal field split levels of the nickel ions, we demonstrate the selective activation of a subterahertz magnon mode with markedly two-dimensional behavior.
View Article and Find Full Text PDF