Publications by authors named "Steen Petersen"

DAF-FM DA is widely used as a live staining compound to show the presence of nitric oxide (NO) in cells. Applying this stain to live zebrafish embryos is known to indicate early centers of bone formation, but the precise (cellular) location of the signal has hitherto not been revealed. Using sections of zebrafish embryos live-stained with DAF-FM DA, we could confirm that the fluorescent signals were predominantly located in areas of ongoing bone formation.

View Article and Find Full Text PDF

Purpose: Dovitinib is a receptor tyrosine kinase inhibitor of VEGFR1-3, PDGFR, FGFR1/3, c-KIT, FLT3 and topoisomerase 1 and 2. The drug response predictor (DRP) biomarker algorithm or DRP-Dovitinib is being developed as a companion diagnostic to dovitinib and was applied retrospectively.

Patients And Methods: Archival tumor samples were obtained from consenting patients in a phase 3 trial comparing dovitinib to sorafenib in renal cell carcinoma patients and the DRP-Dovitinib was applied.

View Article and Find Full Text PDF

The surface of a carboxylate-enriched octuple mutant of Bacillus subtilis lipase A (8M) is chemically anionized to produce core (8M)-shell (cationic polymer surfactants) bionanoconjugates in protein liquid form, which are termed anion-type biofluids. The resultant lipase biofluids exhibit a 2.5-fold increase in hydrolytic activity when compared with analogous lipase biofluids based on anionic polymer surfactants.

View Article and Find Full Text PDF
Article Synopsis
  • The complement system is vital for the immune response, tagging pathogens and dying cells for removal, but its dysfunction can lead to disease.
  • C3b is a key fragment within this system that enhances activation, making it a desirable target for treatments.
  • Researchers developed a modified nanobody (EWE-hC3Nb1) that specifically binds to C3 degradation products, leading to new fusion proteins (EWEnH and EWEµH) that effectively inhibit C3b activity and show potential for use in rodent models of diseases related to complement dysfunction.
View Article and Find Full Text PDF

Glycation is a nonenzymatic posttranslational modification (PTM) known to be increased in the brains of hyperglycemic patients. Alpha-synuclein (αSN), a central player in the etiology of Parkinson's disease, can be glycated at lysine residues, thereby reducing αSN fibril formation in vitro and modulating αSN aggregation in cells. However, the molecular basis for these effects is unclear.

View Article and Find Full Text PDF
Article Synopsis
  • RoxP is a protein produced by a common skin bacterium that helps protect cells from damage caused by free radicals, suggesting it could improve skin barrier function.
  • The study aimed to understand RoxP's structure and how it works as an antioxidant, revealing its unique shape and positively charged groove that may bind beneficial molecules.
  • Despite looking similar to proteins that help cells stick together, RoxP doesn't aid in bacterial adhesion to skin cells; instead, specific parts of its structure are linked to its antioxidant properties.
View Article and Find Full Text PDF

Inflammation resulting from ischaemia/reperfusion injury can cause kidney graft dysfunction, increase the risk of delayed graft function and possibly reduce long-term graft survival. Remote ischaemic conditioning may protect against ischaemia/reperfusion injury and mitigate the immunological response to the graft. We investigated the immunological effects of remote ischaemic conditioning on kidney transplantation from deceased donors in the randomized CONTEXT study.

View Article and Find Full Text PDF

Macrophages and related tissue macrophage populations use the classical NADPH oxidase (NOX2) for the regulated production of superoxide and derived oxidants for pathogen combat and redox signaling. With an emphasis on macrophages, we discuss how sorting into secretory storage vesicles, agonist-responsive membrane trafficking, and segregation into sphingolipid and cholesterol-enriched microdomains (lipid rafts) determine the subcellular distribution and spatial organization of NOX2 and superoxide dismutase-3 (SOD3). We discuss how inflammatory activation of macrophages, in part through small GTPase Rab27A/B regulation of the secretory compartments, mediates the coalescence of these two proteins on the cell surface to deliver a focalized hydrogen peroxide output.

View Article and Find Full Text PDF
Article Synopsis
  • Superoxide dismutase 3 (SOD3) is an important protein that converts harmful superoxide into hydrogen peroxide, and research on zebrafish reveals two versions of this protein (Sod3a and Sod3b) with distinct functions.
  • Both Sod3a and Sod3b exhibit SOD activity, but only Sod3b can bind to heparin, and they are expressed in different organs throughout zebrafish development and in adults.
  • Further studies comparing bone from normal mice to SOD3 mice indicate that SOD3 is crucial for bone health, as the SOD3 mice displayed weaker and less mineralized bones.
View Article and Find Full Text PDF

The effect of food components on brain growth and development has attracted increasing attention. Milk has been shown to contain peptides that deliver important signals to the brains of neonates and infants. In order to reach the brain, milk peptides have to resist proteolytic degradation in the gastrointestinal tract, cross the gastrointestinal barrier and later cross the highly selective blood-brain barrier (BBB).

View Article and Find Full Text PDF

Osteopontin (OPN) is a ubiquitously expressed, multifunctional, and highly phosphorylated protein. OPN contains two neighboring integrin-binding motifs, RGD and SVVYGLR, which mediate interaction with cells. Phosphorylation and proteolytic processing affect the integrin-binding activities of OPN.

View Article and Find Full Text PDF

The multifunctional type 1 receptor sortilin is involved in endocytosis and intracellular transport of ligands. The short intracellular domain of sortilin binds several cytoplasmic adaptor proteins (e.g.

View Article and Find Full Text PDF

Properdin (FP) is a positive regulator of the immune system stimulating the activity of the proteolytically active C3 convertase C3bBb in the alternative pathway of the complement system. Here we present two crystal structures of FP and two structures of convertase bound FP. A structural core formed by three thrombospondin repeats (TSRs) and a TB domain harbors the convertase binding site in FP that mainly interacts with C3b.

View Article and Find Full Text PDF

A synthetic scenario for functionalization of β-lactoglobulin (βLg) with polymeric units containing caffeic acid (βLg-polyCA) was developed; and all intermediates and final products were structurally confirmed using nuclear magnetic resonance spectroscopy, matrix assisted laser desorption ionization time-of-flight mass spectrometry, and physico-chemically characterized using differential scanning calorimetry and circular dichroism. The antioxidant properties and emulsion stability of βLg, βLg-CA conjugate and βLg-polyCA based systems containing high percentage of fish oil (50%) were evaluated; and βLg-polyCA presented the highest antioxidant and free radical-scavenging activity based on DPPH, ABTS and HS scavenging assays (92.4, 87.

View Article and Find Full Text PDF

Superoxide dismutase 3 (SOD3) is an extracellular enzyme with the capacity to modulate extracellular redox conditions by catalyzing the dismutation of superoxide to hydrogen peroxide. In addition to synthesis and release of this extracellular protein via the secretory pathway, several studies have shown that the protein also localizes to intracellular compartments in neutrophils and macrophages. Here we show that human macrophages release SOD3 from an intracellular compartment within 30 min following LPS stimulation.

View Article and Find Full Text PDF

Redox enzymes modulate intracellular redox balance and are secreted in response to cellular oxidative stress, potentially modulating systemic inflammation. Both aerobic and resistance exercise are known to cause acute systemic oxidative stress and inflammation; however, how redox enzyme concentrations alter in extracellular fluids following bouts of either type of exercise is unknown. Recreationally active men ( = 26, mean ± SD: age 28 ± 8 yr) took part in either: 1) two separate energy-matched cycling bouts: one of moderate intensity (MOD) and a bout of high intensity interval exercise (HIIE) or 2) an eccentric-based resistance exercise protocol (RES).

View Article and Find Full Text PDF

Venomous marine cone snails produce peptide toxins (conotoxins) that bind ion channels and receptors with high specificity and therefore are important pharmacological tools. Conotoxins contain conserved cysteine residues that form disulfide bonds that stabilize their structures. To gain structural insight into the large, yet poorly characterized conotoxin H-superfamily, we used NMR and CD spectroscopy along with MS-based analyses to investigate H-Vc7.

View Article and Find Full Text PDF

α-Synuclein (αSN) aggregation is central to the etiology of Parkinson's disease (PD). Large-scale screening of compounds to identify aggregation inhibitors is challenged by stochastic αSN aggregation and difficulties in detecting early-stage oligomers (αSOs). We developed a high-throughput screening assay combining SDS-stimulated αSN aggregation with FRET to reproducibly detect initial stages in αSN aggregation.

View Article and Find Full Text PDF

Bioconjugates established between anionic polyethylene glycol (PEG) based polymers and cationic proteins have proven to be a promising strategy to engineer thermostable biocatalysts. However, the enzyme activity of these bioconjugates is very low and the mechanism of non-covalent PEG-stabilization is yet to be understood. This work presents experimental and molecular dynamics simulation studies, using lipase-polymer surfactant nanoconjugates from mesophile Rhizomucor miehei (RML), performed to evaluate the effect of PEG on enzyme stability and activity.

View Article and Find Full Text PDF

We have previously shown that immunological processes in the brain during α-synuclein-induced neurodegeneration vary depending on the presence or absence of cell death. This suggests that the immune system is able to react differently to the different stages of α-synuclein pathology. However, it was unclear whether these immune changes were governed by brain processes or by a direct immune response to α-synuclein modifications.

View Article and Find Full Text PDF

The pyruvate dehydrogenase complex (PDC) bridges glycolysis and the citric acid cycle. In human, PDC deficiency leads to severe neurodevelopmental delay and progressive neurodegeneration. The majority of cases are caused by variants in the gene encoding the PDC subunit E1α.

View Article and Find Full Text PDF

When evaluating the role of redox-regulating signaling in pulmonary vascular diseases, it is intriguing to consider the modulation of key antioxidant enzymes like superoxide dismutase (SOD) because SOD isoforms are regulated by redox reactions, and, in turn, modulate downstream redox sensitive processes. The emerging field of redox biology is built upon understanding the regulation and consequences of tightly controlled and specific reduction-oxidation reactions that are critical for diverse cellular processes including cell signaling. Of relevance, both the site of production of specific reactive oxygen and nitrogen species and the site of the antioxidant defenses are highly compartmentalized within the cell.

View Article and Find Full Text PDF

Multi-functional phenolic emulsifiers were prepared by covalently coupling β-Lactoglobulin (βLg) to caffeic acid (CA) using crosslinker chemistry at different pH conditions (pH 2.5, 6.0, and 8.

View Article and Find Full Text PDF

The ability of many reptilian hemoglobins (Hbs) to form high-molecular weight polymers, albeit known for decades, has not been investigated in detail. Given that turtle Hbs often contain a high number of cysteine (Cys), potentially contributing to the red blood cell defense against reactive oxygen species, we have examined whether polymerization of Hb could occur via intermolecular disulfide bonds in red blood cells of freshwater turtle Trachemys scripta, a species that is highly tolerant of hypoxia and oxidative stress. We find that one of the two Hb isoforms of the hemolysate HbA is prone to polymerization in vitro into linear flexible chains of different size that are visible by electron microscopy but not the HbD isoform.

View Article and Find Full Text PDF

Plasminogen activator inhibitor type 1 (PAI-1) is a central regulator of fibrinolysis and tissue remodelling. PAI-1 belongs to the serpin superfamily and unlike other inhibitory serpins undergoes a spontaneous inactivation process under physiological conditions, termed latency transition. During latency transition the solvent exposed reactive centre loop is inserted into the central β-sheet A of the molecule, and is no longer accessible to reaction with the protease.

View Article and Find Full Text PDF