Publications by authors named "Steeghs L"

Modification of the lipid A moiety of bacterial lipopolysaccharide influences cell wall properties, endotoxic activity, and bacterial resistance to antimicrobial peptides. Known modifications are variation in the number or length of acyl chains and/or attached phosphoryl groups. Here we identified two genes (gnnA and gnnB) in the major foodborne pathogen Campylobacter jejuni that enable the synthesis of a GlcN3N precursor UDP 2-acetamido-3-amino-2,3-dideoxy-alpha-D-glucopyranose (UDP-GlcNAc3N) in the lipid A backbone.

View Article and Find Full Text PDF

Gonorrhea is one of the most prevalent sexually transmitted diseases in the world. A naturally occurring variation of the terminal carbohydrates on the lipooligosaccharide (LOS) molecule correlates with altered disease states. Here, we investigated the interaction of different stable gonoccocal LOS phenotypes with human dendritic cells and demonstrate that each variant targets a different set of receptors on the dendritic cell, including the C-type lectins MGL and DC-SIGN.

View Article and Find Full Text PDF

Lipopolysaccharide (LPS), also known as endotoxin, is one of the main constituents of the gram-negative bacterial outer membrane. Whereas the lipid A portion of LPS is generally considered the main determinant for endotoxic activity, the oligosaccharide moiety plays an important role in immune evasion and the interaction with professional antigen-presenting cells. Here we describe a novel four-gene cluster involved in the biosynthesis of the Bordetella pertussis core oligosaccharide.

View Article and Find Full Text PDF

Neisseria meningitidis LpxL1 lipopolysaccharide (LPS) bearing penta-acylated lipid A is considered a promising adjuvant candidate for inclusion in future N. meningitidis vaccines, as it elicits a markedly reduced endotoxic response in human macrophages relative to that in wild-type (hexa-acylated) LPS, while it is an equally effective adjuvant in mice. As dendritic cells (DC) and Toll-like receptors (TLR) are regarded as central mediators in the initiation of an immune response, here we evaluated the ability of LpxL1 LPS to mature and to activate human DC and examined its TLR4-/MD-2-activating properties.

View Article and Find Full Text PDF

The development of novel vaccines against Neisseria meningitidis recently gained momentum by the generation of penta-acylated lpxL1 LPS which has similar adjuvant activity, but reduced endotoxic activity as compared to hexa-acylated wild type (H44/76) LPS. We investigated the costimulation requirements for the adjuvant activity of both forms of LPS by immunizing CD28-, ICOS- and B7.1/2/ICOS-deficient mice.

View Article and Find Full Text PDF

The adjuvant activity of Neisseria meningitidis serogroup B lipopoly(oligo)saccharide (LOS) from wild-type and genetically defined LOS mutants and unglycosylated meningococcal lipid A was assessed in C3H/HeN and C3H/HeJ mice. Meningococcal lipid A, a weak agonist for TLR4/MD-2 in human macrophages, was found to have adjuvant activity similar to that of wild-type and KDO(2)-lipid A LOS in C3H/HeN mice. All meningococcal LOS structures as adjuvants induced high titers of IgG1, IgG2a and IgG2b but very little IgG3 to OMP compared to no adjuvant PBS controls.

View Article and Find Full Text PDF

Lipopolysaccharide (LPS) is one of the major constituents of the gram-negative bacterial cell envelope. Its endotoxic activity causes the relatively high reactogenicity of whole-cell vaccines. Several bacteria harbor LPS-modifying enzymes that modulate the endotoxic activity of the LPS.

View Article and Find Full Text PDF

Neisseria meningitidis lipopolysaccharide (LPS) has been identified as a major determinant of dendritic cell (DC) function. Here we report that one of a series of meningococcal mutants with defined truncations in the lacto-N-neotetraose outer core of the LPS exhibited unique strong adhesion and internalization properties towards DC. These properties were mediated by interaction of the GlcNAc(beta1-3)-Gal(beta1-4)-Glc-R oligosaccharide outer core of lgtB LPS with the dendritic-cell-specific ICAM-3 grabbing non-integrin (DC-SIGN) lectin receptor.

View Article and Find Full Text PDF

Neisseria meningitidis (MC) is an important cause of meningitis and septic shock. Primary loose attachment of MC to host epithelial cells is mediated by type IV pili. Lipooligosaccharide (LOS), opacity (Opa) proteins and glycolipid adhesins facilitate subsequent tight attachment.

View Article and Find Full Text PDF

Lipopolysaccharide (LPS) is one of the main constituents of the Gram-negative bacterial outer membrane. It usually consists of a highly variable O-antigen, a less variable core oligosaccharide, and a highly conserved lipid moiety, designated lipid A. Several bacteria are capable of modifying their lipid A architecture in response to external stimuli.

View Article and Find Full Text PDF

Mannose binding lectin (MBL) is a key molecule in the lectin pathway of complement activation, and likely of importance in our innate defence against meningococcal infection. We evaluated the role of MBL in cytokine induction by LPS or non-LPS components of Neisseria meningitidis, using a meningococcal mutant deficient for LPS. Binding experiments showed that MBL exhibited low, but significant binding to encapsulated LPS+ meningococci (H44/76) and LPS-deficient (LPS-) meningococci (H44/76lpxA).

View Article and Find Full Text PDF

Group B Neisseria meningitidis is a human pathogen, for which a universally effective vaccine is still not available. Immune responses to bacteria are initiated by dendritic cells (DC), which internalize and process bacterial antigens for presentation to T cells. We show here that optimal IL-12 and TNF-alpha production by human monocyte derived DC in response to killed serogroup B N.

View Article and Find Full Text PDF

The use of lipopolysaccharide (LPS) as an adjuvant is limited by its high endotoxic activity. In particular, the fatty-acyl pattern of the lipid A part of LPS has been demonstrated to determine its biological activity. By genetic modification of the lipid A biosynthesis pathway in Neisseria meningitidis, a panel of recombinant strains with specific alterations in the lipid A acylation pattern, as well as a strain completely lacking LPS were isolated.

View Article and Find Full Text PDF

In the pathogen Neisseria meningitidis, a completely LPS-deficient but viable mutant can be obtained by insertional inactivation of the lpxA gene, encoding UDP-GlcNAc acyltransferase required for the first step of lipid A biosynthesis. The expression and assembly of integral outer membrane proteins in the absence of LPS is largely unaffected. However, the expression of iron limitation-inducible, cell surface-exposed lipoproteins is greatly reduced.

View Article and Find Full Text PDF

In Gram-negative bacteria, lipopolysaccharide and phospholipid biosynthesis takes place at the inner membrane. How the completed lipid molecules are subsequently transported to the outer membrane remains unknown. Omp85 of Neisseria meningitidis is representative for a family of outer membrane proteins conserved among Gram-negative bacteria.

View Article and Find Full Text PDF

Fulminant meningococcal sepsis (FMS) is considered the prototypical Gram-negative sepsis. Lipopolysaccharide (LPS) is thought to be the main toxic element that induces pro-inflammatory cytokine production after interaction with CD14 and toll-like receptor 4 (TLR4). However, there is increasing evidence that LPS is not the sole toxic element of meningococci.

View Article and Find Full Text PDF

A major problem in the development of vaccines against Gram-negative bacteria is the endotoxic -activity of lipopolysaccharide (LPS), which is determined by its lipid A moiety. Nevertheless, LPS would be an interesting vaccine component because of its immune-stimulating properties. In the present study, we have changed the fatty acid composition of Neisseria meningitidis LPS by replacing the lpxA gene of strain H44/76 with the Escherichia coli or Pseudomonas aeruginosa homologue.

View Article and Find Full Text PDF

In the pathogen Neisseria meningitidis, a completely lipopolysaccharide (LPS)-deficient but viable mutant can be obtained by insertional inactivation of the lpxA gene, encoding UDP-GlcNAc acyltransferase required for the first step of lipid A biosynthesis. To study how outer membrane structure and biogenesis are affected by the absence of this normally major component, inner and outer membranes were separated and their composition analysed. The expression and assembly of integral outer membrane proteins appeared largely unaffected.

View Article and Find Full Text PDF

Two genes homologous to lpxL and lpxM from Escherichia coli and other gram-negative bacteria, which are involved in lipid A acyloxyacylation, were identified in Neisseria meningitidis strain H44/76 and insertionally inactivated. Analysis by tandem mass spectrometry showed that one of the resulting mutants, termed lpxL1, makes lipopolysaccharide (LPS) with penta- instead of hexa-acylated lipid A, in which the secondary lauroyl chain is specifically missing from the nonreducing end of the GlcN disaccharide. Insertional inactivation of the other (lpxL2) gene was not possible in wild-type strain H44/76 expressing full-length immunotype L3 lipopolysaccharide (LPS) but could be readily achieved in a galE mutant expressing a truncated oligosaccharide chain.

View Article and Find Full Text PDF

To determine the relative contribution of lipopolysaccharide (LPS) and non-LPS components of Neisseria meningitidis to the pathogenesis of meningococcal sepsis, this study quantitatively compared cytokine induction by isolated LPS, wild-type serogroup B meningococci (strain H44/76), and LPS-deficient mutant meningococci (strain H44/76[pLAK33]). Stimulation of human peripheral-blood mononuclear cells with wild-type and LPS-deficient meningococci showed that non-LPS components of meningococci are responsible for a substantial part of tumor necrosis factor (TNF)-alpha and interleukin (IL)-1beta production and virtually all interferon (IFN)-gamma production. Based on tricine sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of LPS in proteinase K-treated lysates of N.

View Article and Find Full Text PDF

Lipopolysaccharide (LPS) is a major component of the meningococcal outer membrane. It consists of a hexa-acylated glucosamine disaccharide substituted at both ends with diphosphoethanolamine, to which an oligosaccharide chain of up to 10 sugar residues is attached (1,2). It lacks a long repeating O-antigen side chain, as is typically found in many Enterobacteriaceae, and is therefore also sometimes referred to as lipooligosaccharide or LOS.

View Article and Find Full Text PDF

Meningococcal disease severity correlates with circulating concentrations of lipopolysaccharide (LPS) and proinflammatory cytokines. Disruption of the lpxA gene of Neisseria meningitidis generated a viable strain that was deficient of detectable LPS. The potency of wild-type N.

View Article and Find Full Text PDF

The immunogenicity of outer membrane complexes (OMCs) or heat-inactivated bacteria of a lipopolysaccharide (LPS)-deficient mutant derived from meningococcal strain H44/76 was studied. The immune response in BALB/c mice to the major outer membrane proteins was poor compared to the immune response elicited by wild-type immunogens. However, addition of external H44/76 LPS to mutant OMCs entirely restored the immune response.

View Article and Find Full Text PDF

The pili of Neisseria meningitidis are a key virulence factor, being major adhesins of this capsulate organism that contribute to specificity for the human host. Recently it has been reported that meningococcal pili are post-translationally modified by the addition of an O-linked trisaccharide, Gal (beta1-4) Gal (alpha1-3) 2,4-diacetimido-2,4,6-trideoxyhexose. Using a set of random genomic sequences from N.

View Article and Find Full Text PDF