The translation of basic drug discoveries from laboratories to clinical use presents substantial challenges. Factors such as insufficient funding, misdirected project focus, and inability to understand a drug's limitations or strengths contribute to the difficulty of this process. To address these issues, the National Institutes of Health (NIH) has established various resources dedicated to streamlining drug development.
View Article and Find Full Text PDFBackground: The aim of this study is an improved understanding of drug distribution in brain metastases. Rather than single point snapshots, we analyzed the time course and route of drug/probe elimination (clearance), focusing on the intramural periarterial drainage (IPAD) pathway.
Methods: Mice with JIMT1-BR HER2+ experimental brain metastases were injected with biocytin-TMR and either trastuzumab or human IgG.
Breast cancer in young patients is known to exhibit more aggressive biological behavior and is associated with a less favorable prognosis than the same disease in older patients, owing in part to an increased incidence of brain metastases. The mechanistic explanations behind these findings remain poorly understood. We recently reported that young mice, in comparison to older mice, developed significantly greater brain metastases in four mouse models of triple-negative and luminal B breast cancer.
View Article and Find Full Text PDFMetastasis is the leading cause of cancer patient mortality. Metastasis suppressors are genes that, upon reexpression in metastatic tumor cells to levels observed in their nonmetastatic counterparts, significantly reduce metastasis without affecting the growth of the primary tumor. Analysis of > 30 metastasis suppressors revealed complex mechanisms of action that include multiple signaling pathways, transcriptional patterns, posttranscriptional regulatory mechanisms, and potential contributions of genomic stability.
View Article and Find Full Text PDFBrain metastases are an increasing global public health concern, even as survival rates improve for patients with metastatic disease. Both metastases and the sequelae of their treatment are key determinants of the inter-related priorities of patient survival, function, and quality of life, mandating a multidimensional approach to clinical care and research. At a virtual National Cancer Institute Workshop in September, 2022, key stakeholders convened to define research priorities to address the crucial areas of unmet need for patients with brain metastases to achieve meaningful advances in patient outcomes.
View Article and Find Full Text PDFAdvances in drug treatments for brain metastases of breast cancer have improved progression-free survival but new, more efficacious strategies are needed. Most chemotherapeutic drugs infiltrate brain metastases by moving between brain capillary endothelial cells, paracellular distribution, resulting in heterogeneous distribution, lower than that of systemic metastases. Herein, we tested three well-known transcytotic pathways through brain capillary endothelial cells as potential avenues for drug access: transferrin receptor (TfR) peptide, low-density lipoprotein receptor 1 (LRP1) peptide, albumin.
View Article and Find Full Text PDFPurpose: Preclinical data showed that prophylactic, low-dose temozolomide (TMZ) significantly prevented breast cancer brain metastasis. We present results of a phase I trial combining T-DM1 with TMZ for the prevention of additional brain metastases after previous occurrence and local treatment in patients with HER2+ breast cancer.
Patients And Methods: Eligible patients had HER2+ breast cancer with brain metastases and were within 12 weeks of whole brain radiation therapy (WBRT), stereotactic radiosurgery, and/or surgery.
Tumor-derived exosomes have documented roles in accelerating the initiation and outgrowth of metastases, as well as in therapy resistance. Little information supports the converse, that exosomes or similar vesicles can suppress metastasis. We investigated the NME1 (Nm23-H1) metastasis suppressor as a candidate for metastasis suppression by extracellular vesicles.
View Article and Find Full Text PDFThe protective blood-brain barrier has a major role in ensuring normal brain function by severely limiting and tightly controlling the ingress of substances into the brain from the circulation. In primary brain tumours, such as glioblastomas, as well as in brain metastases from cancers in other organs, including lung and breast cancers and melanoma, the blood-brain barrier is modified and is referred to as the blood-tumour barrier (BTB). Alterations in the BTB affect its permeability, and this structure participates in reciprocal regulatory pathways with tumour cells.
View Article and Find Full Text PDFPurpose: Breast cancer diagnosed in young patients is often aggressive. Because primary breast tumors from young and older patients have similar mutational patterns, we hypothesized that the young host microenvironment promotes more aggressive metastatic disease.
Experimental Design: Triple-negative or luminal B breast cancer cell lines were injected into young and older mice side-by-side to quantify lung, liver, and brain metastases.
Specific biological properties of those circulating cancer cells that are the origin of brain metastases (BM) are not well understood. Here, single circulating breast cancer cells were fate-tracked during all steps of the brain metastatic cascade in mice after intracardial injection over weeks. A novel two-photon microscopy methodology was developed that allowed to determine the specific cellular and molecular features of breast cancer cells that homed in the brain, extravasated, and successfully established a brain macrometastasis.
View Article and Find Full Text PDFA potentially important aspect in the regulation of tumour metastasis is endocytosis. This process consists of internalisation of cell-surface receptors via pinocytosis, phagocytosis or receptor-mediated endocytosis, the latter of which includes clathrin-, caveolae- and non-clathrin or caveolae-mediated mechanisms. Endocytosis then progresses through several intracellular compartments for sorting and routing of cargo, ending in lysosomal degradation, recycling back to the cell surface or secretion.
View Article and Find Full Text PDFHigh grade serous ovarian cancer (HGSOC) is a fatal gynecologic malignancy in the U.S. with limited treatment options.
View Article and Find Full Text PDFSpread of cancer to the brain remains an unmet clinical need in spite of the increasing number of cases among patients with lung, breast cancer, and melanoma most notably. Although research on brain metastasis was considered a minor aspect in the past due to its untreatable nature and invariable lethality, nowadays, limited but encouraging examples have questioned this statement, making it more attractive for basic and clinical researchers. Evidences of its own biological identity (i.
View Article and Find Full Text PDFBackground: Brain metastases of HER2+ breast cancer persist as a clinical challenge. Many therapeutics directed at human epidermal growth factor receptor 2 (HER2) are antibodies or antibody-drug conjugates (ADCs), and their permeability through the blood-tumor barrier (BTB) is poorly understood. We investigated the efficacy of a biparatopic anti-HER2 antibody-tubulysin conjugate (bHER2-ATC) in preclinical models of brain metastases.
View Article and Find Full Text PDFBrain metastases occur in up to 25-55% of patients with metastatic HER2-positive breast cancer. Standard treatment has high rates of recurrence or progression, limiting survival and quality of life in most patients. Temozolomide (TMZ) is known to penetrate the blood-brain barrier and is US FDA approved for treatment of glioblastoma.
View Article and Find Full Text PDFThe development of effective therapies against brain metastasis is currently hindered by limitations in our understanding of the molecular mechanisms driving it. Here we define the contributions of tumour-secreted exosomes to brain metastatic colonization and demonstrate that pre-conditioning the brain microenvironment with exosomes from brain metastatic cells enhances cancer cell outgrowth. Proteomic analysis identified cell migration-inducing and hyaluronan-binding protein (CEMIP) as elevated in exosomes from brain metastatic but not lung or bone metastatic cells.
View Article and Find Full Text PDFAntibody-drug conjugates (ADCs) are immunoconjugates comprised of a monoclonal antibody tethered to a cytotoxic drug (known as the payload) via a chemical linker. The ADC is designed to selectively deliver the ultratoxic payload directly to the target cancer cells. To date, five ADCs have received market approval and over 100 are being investigated in various stages of clinical development.
View Article and Find Full Text PDFNM23 (NME) is a metastasis suppressor that significantly reduces metastasis without affecting primary tumor size, however, the precise molecular mechanisms are not completely understood. We examined the role of dynamin (DNM2), a GTPase regulating membrane scission of vesicles in endocytosis, in NME1 and NME2 regulation of tumor cell motility and metastasis. Overexpression of NMEs in MDA-MB-231T and MDA-MB-435 cancer cell lines increased endocytosis of transferrin and EGF receptors (TfR and EGFR) concurrent with motility and migration suppression.
View Article and Find Full Text PDFBreast cancer brain metastases (BM) affect younger women disproportionally, including those lacking estrogen receptor (ER), progesterone receptor, and HER2 (known as triple-negative breast cancer; TNBC). Previous studies in preclinical models showed that pre-menopausal levels of estradiol (E2) promote TNBC-BM through incompletely understood mechanisms involving reactive astrocytes. Herein, a novel mechanism involving E2-dependent upregulation of brain-derived neurotrophic factor (BDNF) in astrocytes, and subsequent activation of tumor cell tropomyosin kinase receptor B (TrkB), is identified.
View Article and Find Full Text PDFBackground: TNF-related apoptosis-inducing ligand (TRAIL) receptor agonists are attractive anti-tumor agents because of their capability to induce apoptosis in cancer cells by activating death receptors (DR) 4 and 5 with little toxicity against normal cells. Despite an attractive mechanism of action, previous clinical efforts to use TRAIL receptor agonists have been unsuccessful. In this study, we examined MEDI3039, a highly potent multivalent DR5 agonist, in breast cancer cell lines and in vivo models.
View Article and Find Full Text PDFEuropean fruit tree canker, caused by Neonectria ditissima, is an important disease of pome fruit worldwide. Apple cultivars differ in their levels of susceptibility to N. ditissima.
View Article and Find Full Text PDFAn estimated 20% of all patients with cancer will develop brain metastases, with the majority of brain metastases occurring in those with lung, breast and colorectal cancers, melanoma or renal cell carcinoma. Brain metastases are thought to occur via seeding of circulating tumour cells into the brain microvasculature; within this unique microenvironment, tumour growth is promoted and the penetration of systemic medical therapies is limited. Development of brain metastases remains a substantial contributor to overall cancer mortality in patients with advanced-stage cancer because prognosis remains poor despite multimodal treatments and advances in systemic therapies, which include a combination of surgery, radiotherapy, chemotherapy, immunotherapy and targeted therapies.
View Article and Find Full Text PDF