DNA repair through homologous recombination (HR) is of vital importance for maintaining genome stability and preventing tumorigenesis. RAD51 is the core component of HR, catalyzing the strand invasion and homology search. Here, we highlight recent findings on FIRRM and FIGNL1 as regulators of the dynamics of RAD51.
View Article and Find Full Text PDFCell differentiation is a process that must be precisely regulated for the maintenance of tissue homeostasis. Differentiation towards a multiciliated cell fate is characterized by well-defined stages, where a transcriptional cascade is activated leading to the formation of multiple centrioles and cilia. Centrioles migrate and dock to the apical cell surface and, acting as basal bodies, give rise to multiple motile cilia.
View Article and Find Full Text PDFHuman brain possesses a unique anatomy and physiology. For centuries, methodological barriers and ethical challenges in accessing human brain tissues have restricted researchers into using 2-D cell culture systems and model organisms as a tool for investigating the mechanisms underlying neurological disorders in humans. However, our understanding regarding the human brain development and diseases has been recently extended due to the generation of 3D brain organoids, grown from human stem cells or induced pluripotent stem cells (iPSCs).
View Article and Find Full Text PDF