Publications by authors named "Stavroula Nanaki"

In the present work, Risperidone microparticles from poly(lactic acid)/poly(hexylene succinate) (PLA-b-PHSu) block copolymers in different ratios, 95/05, 90/10 and 80/20 /, were examined as long-acting injectable formulations. Nuclear magnetic resonance (NMR) was used to verify the successful synthesis of copolymers. Enzymatic hydrolysis showed an increase in weight loss as the content of PHSu increased, while the cytotoxicity studies confirmed the biocompatibility of the copolymers.

View Article and Find Full Text PDF

The present study evaluates the use of thiolized chitosan conjugates (CS) in combination with two fundamental carbon nanoforms (carbon dots (CDs) and Hierarchical Porous Carbons (HPC)) for the preparation of intranasally (IN) administrated galantamine (GAL) nanoparticles (NPs). Initially, the modification of CS with L-cysteine (Cys) was performed, and the successful formation of a Cys-CS conjugates was verified via H-NMR, FTIR, and pXRD. The new Cys-CS conjugate showed a significant solubility enhancement in neutral and alkaline pH, improving CS's utility as a matrix-carrier for IN drug administration.

View Article and Find Full Text PDF

Antiangiogenic therapeutic agents (anti-VEGF) have contributed to the treatment of retinal vein occlusion (RVO) while mesenchymal stromal cell- (MSCs-) mediated therapies limit eye degeneration. The aim of the present study is to determine the effect of adipose-derived MSCs (ASCs) combination with nanocarriers of anti-VEGF in a pharmaceutically induced animal model of RVO. Nanoparticles (NPs) of thiolated chitosan (ThioCHI) with encapsulated anti-VEGF antibody were prepared.

View Article and Find Full Text PDF

Novel chitosan copolymers (CS-g-SBMA) grafted with [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide (SBMA) in various molar ratio 1.5:1, 5:1, 11.5:1 and 20:1, were synthesized in the present study.

View Article and Find Full Text PDF

In the present study, the preparation of controlled-released leflunomide (LFD)-loaded skin patches was evaluated, utilizing the combination of chitosan (CS) nanoparticles (NPs) incorporated into suitable poly(l-lactic acid) (PLLA) or poly(lactic--glycolic acid) (PLGA) polyester matrices. Initially, LFD-loaded CS NPs of ~600 nm and a smooth surface were prepared, while strong inter-molecular interactions between the drug and the CS were unraveled. In the following step, the prepared LFD-loaded CS NPs were incorporated into PLLA or PLGA, and thin-film patches were prepared via spin-coating.

View Article and Find Full Text PDF

The aim of the present study was to prepare a leflunomide (LFD) sustained release transdermal delivery system for the treatment of psoriasis. In this context, LFD-loaded nanoparticles (NPs) based on either neat chitosan (CS) or CS modified with [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide (SDAEM, a sulfobetaine zwitterionic compound) were initially prepared ionotropic gelation and characterized in terms of in vitro dissolution, physicochemical, and antibacterial properties. Results showed that the use of the SDAEM-modified CS resulted in the formation of LFD-loaded NPs with improved wetting and solubilization properties, better in vitro dissolution profile characteristics (i.

View Article and Find Full Text PDF

In the present work, the porous metal-organic framework (MOF) BasoliteF300 (Fe-BTC) was tested as a potential drug-releasing depot to enhance the solubility of the anticancer drug paclitaxel (PTX) and to prepare controlled release formulations after its encapsulation in amphiphilic methoxy poly(ethylene glycol)-poly(ε-caprolactone) (mPEG-PCL) nanoparticles. Investigation revealed that drug adsorption in Fe-BTC reached approximately 40%, a relatively high level, and also led to an overall drug amorphization as confirmed by differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The dissolution rate of PTX-loaded MOF was substantially enhanced achieving a complete (100%) release within four days, while the neat drug only reached a 13% maximum rate (3-4 days).

View Article and Find Full Text PDF

Chitosan (CS) is a hemi-synthetic cationic linear polysaccharide produced by the deacetylation of chitin. CS is non-toxic, highly biocompatible, and biodegradable, and it has a low immunogenicity. Additionally, CS has inherent antibacterial properties and a mucoadhesive character and can disrupt epithelial tight junctions, thus acting as a permeability enhancer.

View Article and Find Full Text PDF

The aim of this work was to evaluate the effectiveness of neat chitosan (CS) and its derivatives with 2-acrylamido-2-methyl-1-propanesulfonic acid (AAMPS) and [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide (MEDSP) as appropriate nanocarriers for the simultaneous ocular administration of dexamethasone sodium phosphate (DxP) and chloramphenicol (CHL). The derivatives CS-AAMPS and CS-MEDSP have been synthesized by free-radical polymerization and their structure has been proved by Fourier-Transformed Infrared Spectroscopy (FT-IR) spectroscopy. Both derivatives exhibited low cytotoxicity, enhanced mucoadhesive properties and antimicrobial activity against () and ().

View Article and Find Full Text PDF

Chitosan (CS) is a polymer extensively used in drug delivery formulations mainly due to its biocompatibility and low toxicity. In the present study, chitosan was used for nanoencapsulation of a budesonide (BUD) drug via the well-established ionic gelation technique and a slight modification of it, using also poly(vinyl alcohol) (PVA) as a surfactant. Scanning electron microscopy (SEM) micrographs revealed that spherical nanoparticles were successfully prepared with average sizes range between 363 and 543 nm, as were measured by dynamic light scattering (DLS), while zeta potential verified their positive charged surface.

View Article and Find Full Text PDF

In the present study, novel block copolymers of poly(l-lactide)-block-poly(propylene adipate) (PLLA--PPAd) were synthesized in two ratios, 90/10 and 75/25 and were further investigated as long-acting injectable (LAI) polymeric matrices in naltrexone base microparticle formulations. The synthesized polymers were characterized by H-NMR, C-NMR, FTIR, XRD, TGA and DSC. NMR and FTIR spectroscopies confirmed the successful synthesis of copolymers while DSC showed that these are block copolymers with well-defined and separated blocks.

View Article and Find Full Text PDF

In the present study, poly(l-lactic acid) (PLLA) and poly(lactide--glycolide) (PLGA) hybrid nanoparticles were developed for intranasal delivery of galantamine, a drug used in severe to moderate cases of Alzheimer's disease. Galantamine (GAL) was adsorbed first in hierarchical porous carbon (HPC). Formulations were characterized by FT-IR, which showed hydrogen bond formation between GAL and HPC.

View Article and Find Full Text PDF

In the present study, new aledronate (AL) loaded microspheres were prepared with the use of polycaprolactone (PCL)/Vitamin E d-ɑ-tocopheryl poly(ethylene glycol) 1000 succinate (TPGS) copolymers. Specifically, PCL-TPGS copolymers, prepared at several PCL to TPGS ratios (namely, 90/10, 80/20, 70/30 and 60/40 w/w) via a ring opening polymerization process, were characterized by intrinsic viscosity, proton nuclear magnetic resonance (H NMR), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC) and enzymatic hydrolysis. Results showed that as TPGS content increases the intrinsic viscosity of the copolymer (and hence, the viscosity-average molecular weight) is decreasing, while FTIR analysis showed the formation of hydrogen bonds between the -C[bond, double bond]O of PCL and the -OH of TPGS.

View Article and Find Full Text PDF

Magnetic hybrid inorganic/organic nanocarriers are promising alternatives for targeted cancer treatment. The present study evaluates the preparation of manganese ferrite magnetic nanoparticles (MnFeO MNPs) encapsulated within Paclitaxel (PTX) loaded thioether-containing ω-hydroxyacid-co-poly(d,l-lactic acid) (TEHA-co-PDLLA) polymeric nanoparticles, for the combined hyperthermia and chemotherapy treatment of cancer. Initially, TEHA-co-PDLLA semitelechelic block copolymers were synthesized and characterized by H-NMR, FTIR, DSC, and XRD.

View Article and Find Full Text PDF

In the present study polymer blends based on chitosan (CS) and its derivatives with trans-aconitic (t-Acon) acid and another with trimellitic (TRM) anhydride, were prepared for topical wound delivery of chloramphenicol (CHL). FT-IR spectroscopy revealed the successful grafting of t-Acon acid or TRM anhydride into CS macromolecules at molar ratios 1:1 and 1:0.5, while powder X-ray diffraction (XRD) analysis showed that the prepared materials were amorphous.

View Article and Find Full Text PDF

In the present study, the newly synthesized castor oil-derived thioether-containing ω-hydroxyacid (TEHA) block copolymers with polycaprolactone (TEHA-b-PCL), with methoxypoly(ethylene glycol) (mPEG), (TEHA-b-mPEG) and with poly(ethylene glycol) (PEG) (TEHA-b-PEG-b-TEHA), were investigated as polymeric carriers for fabrication of naltrexone (NLX)-loaded microspheres by the single emulsion solvent evaporation technique. These microspheres are appropriate for the long-term treatment of opioid/alcohol dependence. Physical properties of the obtained microspheres were characterized in terms of size, morphology, drug loading capacity, and drug release.

View Article and Find Full Text PDF

The aim of the present work is to evaluate the preparation of sunscreen emulsions based on chitosan (CS) nanoparticles with annatto, ultrafiltrated (UF) annatto, saffron, and ultrafiltrated saffron. Ionic gelation was used for the preparation of chitosan nanoparticles, while their morphological characteristics and physicochemical properties were evaluated via Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), and dynamic light scattering (DLS). Results showed that the prepared nanoparticles ranged from ~150 to ~500 nm and had a spherical or irregular shape.

View Article and Find Full Text PDF

The present study evaluates the preparation of risperidone controlled release microspheres as appropriate long-acting injectable formulations based on a series of novel biodegradable and biocompatible poly(lactic acid)⁻poly(propylene adipate) (PLA/PPAd) polymer blends. Initially, PPAd was synthesized using a two-stage melt polycondensation method (esterification and polycondensation) and characterized by 1H-NMR, differential scanning calorimetry (DSC), and powder X-ray diffraction (XRD) analyses. DSC and XRD results for PLA/PPAd blends (prepared by the solvent evaporation method) showed that these are immiscible, while enzymatic hydrolysis studies performed at 37 °C showed increased mass loss for PPAd compared to PLA.

View Article and Find Full Text PDF

Risperidone (RIS)-loaded microspheres based on poly(alkylene adipate)s derived from dicarboxylic acids and different aliphatic diols were prepared by the oil in water emulsion and solvent evaporation method. Specifically, 3 polyesters, namely poly(ethylene adipate), poly(propylene adipate), and poly(butylene adipate), were prepared with the aid of a 2-stage melt-polycondensation method and characterized by gel permeation chromatography, proton nuclear magnetic resonance (H NMR), differential scanning calorimetry, and X-ray diffraction analysis. Results showed that the molecular weight of the polyesters increased as the diol molecular weight increased, while all polymers were of semi-crystalline nature and the melting temperature was varying from 49.

View Article and Find Full Text PDF

The purpose of the present study was to use commercial available polymers like PVP/PEG, soluplus® and kollidon® SR to prepare immediate and sustained release formulations of felodipine by hot melt mixing method. Solid dispersions containing 5, 10, 20 and 30wt% drug have been prepared in a Haake-Buchler Reomixer at melt temperature 130°C and mixing time 10min. As was found from DSC and XDR studies completely amorphous and miscible solid dispersions can be prepared.

View Article and Find Full Text PDF

In this study, mesocellular silica foam (MCF) was used to encapsulate paliperidone, an antipsychotic drug used in patients suffering from bipolar disorder. MCF with the drug adsorbed was further encapsulated into poly(lactic acid) (PLA) and poly(lactide--glycolide) (PLGA) 75/25 / microspheres and these have been coated with thiolated chitosan. As found by TEM analysis, thiolated chitosan formed a thin layer on the polymeric microspheres' surface and was used in order to enhance their mucoadhesiveness.

View Article and Find Full Text PDF

The present study focused on the synthesis and application of novel isocyanate-modified carrageenan polymers as sorbent materials for pre-concentration and removal of diclofenac (DCF) and carbamazepine (CBZ) in different aqueous matrices (surface waters and wastewaters). The polymer materials were characterized using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Thermal Gravimetric Analysis (TGA) and Scanning Electron Microscopy (SEM). The effects on the adsorption behavior were studied, and the equilibrium data were fitted by the Langmuir and Freundlich models.

View Article and Find Full Text PDF

In this study, high surface area mesoporous silica foam with cellular pore morphology (MCF) was used for injectable delivery of paliperidone, an antipsychotic drug used in patients suffering from bipolar disorder. The aim was to enhance paliperidone solubility and simultaneously to prepare long active intractable microspheres. For this reason paliperidone was first loaded in MCF silica, and the whole system was further encapsulated into PLA and PLGA 75/25w/w copolymer in the form of microspheres.

View Article and Find Full Text PDF

In this work, high surface area mesoporous silica (SBA-15) was loaded with paclitaxel (taxol, PTX) and was further entrapped into poly(lactic acid-co-glycolic acid) (PLGA) microparticles (MPs). A modified solvent evaporation-emulsion method was used in order to formulate the composite microparticles with sizes of 8-12μm. PTX loaded SBA-15 as well as the PLGA/PTX-SBA-15 composites were characterized in terms of their morphology, crystal structure and thermal properties.

View Article and Find Full Text PDF

Nanoscale Zr-based metal organic frameworks (MOFs) UiO-66 and UiO-67 were studied as potential anticancer drug delivery vehicles. Two model drugs were used, hydrophobic paclitaxel and hydrophilic cisplatin, and were adsorbed onto/into the nano MOFs (NMOFs). The drug loaded MOFs were further encapsulated inside a modified poly(ε-caprolactone) with d-α-tocopheryl polyethylene glycol succinate polymeric matrix, in the form of microparticles, in order to prepare sustained release formulations and to reduce the drug toxicity.

View Article and Find Full Text PDF