Humans are exposed to a wide variety of small molecules with antioxidant properties that are poorly metabolized by mammalian cells. However, gastrointestinal microbes encode enzymes that convert these redox-active molecules into nutrient sources and electron acceptors to support bacterial growth in the gut. Here, we describe recent studies highlighting how microbial metabolism of host-derived antioxidants modulates interspecies interactions and provide an overview of the interdisciplinary approaches being used to map these metabolic pathways in vivo.
View Article and Find Full Text PDFHost cells sense and respond to pathogens by dynamically regulating cell signaling. The rapid modulation of signaling pathways is achieved by post-translational modifications (PTMs) that can alter protein structure, function, and/or binding interactions. By using chemical probes to broadly profile changes in enzyme function or side-chain reactivity, activity-based protein profiling (ABPP) can reveal PTMs that regulate host-microbe interactions.
View Article and Find Full Text PDFMammalian cells synthesize the antioxidant glutathione (GSH) to shield cellular biomolecules from oxidative damage. Certain bacteria, including the gastric pathogen Helicobacter pylori, can perturb host GSH homeostasis. H.
View Article and Find Full Text PDFCurr Opin Chem Biol
August 2023
Low-molecular-weight (LMW) thiols are an abundant class of cysteine-derived small molecules found in all forms of life that maintain reducing conditions within cells. While their contributions to cellular redox homeostasis are well established, LMW thiols can also mediate other aspects of cellular physiology, including intercellular interactions between microbial and host cells. Here we discuss emerging roles for these redox-active metabolites at the host-microbe interface.
View Article and Find Full Text PDFLow-molecular-weight (LMW) thiols are small-molecule antioxidants required for the maintenance of intracellular redox homeostasis. However, many host-associated microbes, including the gastric pathogen Helicobacter pylori, unexpectedly lack LMW-thiol biosynthetic pathways. Using reactivity-guided metabolomics, we identified the unusual LMW thiol ergothioneine (EGT) in H.
View Article and Find Full Text PDFProteases are attractive targets for infectious disease diagnostics. Peptide-based sensors that are cleaved by pathogen proteases can provide a rapid readout of infection. However, identifying peptide substrates specific to a targeted pathogen is a significant challenge.
View Article and Find Full Text PDFOxidative stress is a defining feature of most cancers, including those that stem from carcinogenic infections. Reactive oxygen species can drive tumor formation, yet the molecular oxidation events that contribute to tumorigenesis are largely unknown. Here we show that inactivation of a single, redox-sensitive cysteine in the host protease legumain, which is oxidized during infection with the gastric cancer-causing bacterium Helicobacter pylori, accelerates tumor growth.
View Article and Find Full Text PDF, the causative agent of the human diarrheal disease cholera, exports numerous enzymes that facilitate its adaptation to both intestinal and aquatic niches. These secreted enzymes can mediate nutrient acquisition, biofilm assembly, and interactions with its host. We recently identified a secreted serine protease, IvaP, that is active in infected rabbits and human choleric stool.
View Article and Find Full Text PDFCurr Top Microbiol Immunol
August 2019
Activity-based protein profiling (ABPP) is a technique for selectively detecting reactive amino acids in complex proteomes with the aid of chemical probes. Using probes that target catalytically active enzymes, ABPP can rapidly define the functional proteome of a biological system. In recent years, this approach has been increasingly applied to globally profile enzymes active at the host-pathogen interface of microbial infections.
View Article and Find Full Text PDFFerroptosis is a form of regulated cell death characterized by the iron-dependent accumulation of lipid hydroperoxides to lethal levels. Emerging evidence suggests that ferroptosis represents an ancient vulnerability caused by the incorporation of polyunsaturated fatty acids into cellular membranes, and cells have developed complex systems that exploit and defend against this vulnerability in different contexts. The sensitivity to ferroptosis is tightly linked to numerous biological processes, including amino acid, iron, and polyunsaturated fatty acid metabolism, and the biosynthesis of glutathione, phospholipids, NADPH, and coenzyme Q.
View Article and Find Full Text PDFActivity-based protein profiling (ABPP) is a chemoproteomic tool for detecting active enzymes in complex biological systems. We used ABPP to identify secreted bacterial and host serine hydrolases that are active in animals infected with the cholera pathogen Vibrio cholerae. Four V.
View Article and Find Full Text PDFBackground: Accurate and high-throughput genotyping of Mycobacterium tuberculosis complex (MTBC) may be important for understanding the epidemiology and pathogenesis of tuberculosis (TB). In this study, we report the development of a LightCycler® real-time PCR single-nucleotide-polymorphism (LRPS) assay for the rapid determination of MTBC lineages/sublineages in minimally processed sputum samples from TB patients.
Method: Genotyping analysis of 70 MTBC strains was performed using the Long Sequence Polymorphism-PCR (LSP-PCR) technique and the LRPS assay in parallel.
The outbreak of diarrhoea and haemolytic uraemic syndrome that occurred in Germany in 2011 was caused by a Shiga toxin-producing enteroaggregative Escherichia coli (EAEC) strain. The strain was classified as EAEC owing to the presence of a plasmid (pAA) that mediates a characteristic pattern of aggregative adherence on cultured cells, the defining feature of EAEC that has classically been associated with virulence. Here we describe an infant rabbit-based model of intestinal colonization and diarrhoea caused by the outbreak strain, which we use to decipher the factors that mediate the pathogen's virulence.
View Article and Find Full Text PDFBacteria are able to adapt to dramatically different microenvironments, but in many organisms, the signaling pathways, transcriptional programs, and downstream physiological changes involved in adaptation are not well-understood. Here, we discovered that osmotic stress stimulates a signaling network in Mycobacterium tuberculosis regulated by the eukaryotic-like receptor Ser/Thr protein kinase PknD. Expression of the PknD substrate Rv0516c was highly induced by osmotic stress.
View Article and Find Full Text PDFThe luciferase protein fragment complementation assay is a powerful tool for studying protein-protein interactions. Two inactive fragments of luciferase are genetically fused to interacting proteins, and when these two proteins interact, the luciferase fragments can reversibly associate and reconstitute enzyme activity. Though this technology has been used extensively in live eukaryotic cells, split luciferase complementation has not yet been applied to studies of dynamic protein-protein interactions in live bacteria.
View Article and Find Full Text PDFMycobacterium tuberculosis (Mtb) has evolved into a highly successful human pathogen. It deftly subverts the bactericidal mechanisms of alveolar macrophages, ultimately inducing granuloma formation and establishing long-term residence in the host. These hallmarks of Mtb infection are facilitated by the metabolic adaptation of the pathogen to its surrounding environment and the biosynthesis of molecules that mediate its interactions with host immune cells.
View Article and Find Full Text PDFCysQ is a 3'-phosphoadenosine-5'-phosphatase that dephosphorylates intermediates from the sulfate assimilation pathway of Mycobacterium tuberculosis (Mtb). Here, we demonstrate that cysQ disruption attenuates Mtb growth in vitro and decreases the biosynthesis of sulfated glycolipids but not major thiols, suggesting that the encoded enzyme specifically regulates mycobacterial sulfation.
View Article and Find Full Text PDFMycobacterium tuberculosis possesses an unusual cell wall that is replete with virulence-enhancing lipids. One cell wall molecule unique to pathogenic M. tuberculosis is polyacyltrehalose (PAT), a pentaacylated, trehalose-based glycolipid.
View Article and Find Full Text PDFMycobacterium tuberculosis ( Mtb) produces a number of sulfur-containing metabolites that contribute to its pathogenesis and ability to survive in the host. These metabolites are products of the sulfate assimilation pathway. CysQ, a 3'-phosphoadenosine-5'-phosphatase, is considered an important regulator of this pathway in plants, yeast, and other bacteria.
View Article and Find Full Text PDF