Publications by authors named "Stavroula G Mougiakakou"

Despite current recommendations, there is no recent scientific study comparing the influence of CT reconstruction kernels on lung pattern recognition in interstitial lung disease (ILD).To evaluate the sensitivity of lung (i70) and soft (i30) CT kernel algorithms for the diagnosis of ILD patterns.We retrospectively extracted between 15-25 pattern annotations per case (1 annotation = 15 slices of 1 mm) from 23 subjects resulting in 408 annotation stacks per lung kernel and soft kernel reconstructions.

View Article and Find Full Text PDF

Regular nutrient intake monitoring in hospitalised patients plays a critical role in reducing the risk of disease-related malnutrition (DRM). Although several methods to estimate nutrient intake have been developed, there is still a clear demand for a more reliable and fully automated technique, as this could improve the data accuracy and reduce both the participant burden and the health costs. In this paper, we propose a novel system based on artificial intelligence to accurately estimate nutrient intake, by simply processing RGB depth image pairs captured before and after a meal consumption.

View Article and Find Full Text PDF

The existing adaptive basal-bolus advisor (ABBA) was further developed to benefit patients under insulin therapy with multiple daily injections (MDI). Three different in silico experiments were conducted with the DMMS.R simulator to validate the approach of combined use of self-monitoring of blood glucose (SMBG) and insulin injection devices, e.

View Article and Find Full Text PDF

Purpose: To conduct a meta-analysis to determine specific computed tomography (CT) patterns and clinical features that discriminate between nonspecific interstitial pneumonia (NSIP) and usual interstitial pneumonia (UIP).

Materials And Methods: The PubMed/Medline and Embase databases were searched for studies describing the radiological patterns of UIP and NSIP in chest CT images. Only studies involving histologically confirmed diagnoses and a consensus diagnosis by an interstitial lung disease (ILD) board were included in this analysis.

View Article and Find Full Text PDF

Objectives: The objective of this study is to assess the performance of a computer-aided diagnosis (CAD) system (INTACT system) for the automatic classification of high-resolution computed tomography images into 4 radiological diagnostic categories and to compare this with the performance of radiologists on the same task.

Materials And Methods: For the comparison, a total of 105 cases of pulmonary fibrosis were studied (54 cases of nonspecific interstitial pneumonia and 51 cases of usual interstitial pneumonia). All diagnoses were interstitial lung disease board consensus diagnoses (radiologically or histologically proven cases) and were retrospectively selected from our database.

View Article and Find Full Text PDF

Self-monitoring of blood glucose (SMBG) and continuous glucose monitoring (CGM) are commonly used by type 1 diabetes (T1D) patients to measure glucose concentrations. The proposed adaptive basal-bolus algorithm (ABBA) supports inputs from either SMBG or CGM devices to provide personalised suggestions for the daily basal rate and prandial insulin doses on the basis of the patients' glucose level on the previous day. The ABBA is based on reinforcement learning, a type of artificial intelligence, and was validated in silico with an FDA-accepted population of 100 adults under different realistic scenarios lasting three simulated months.

View Article and Find Full Text PDF

Although reinforcement learning (RL) is suitable for highly uncertain systems, the applicability of this class of algorithms to medical treatment may be limited by the patient variability which dictates individualised tuning for their usually multiple algorithmic parameters. This study explores the feasibility of RL in the framework of artificial pancreas development for type 1 diabetes (T1D). In this approach, an Actor-Critic (AC) learning algorithm is designed and developed for the optimisation of insulin infusion for personalised glucose regulation.

View Article and Find Full Text PDF

Correct predictions of future blood glucose levels in individuals with Type 1 Diabetes (T1D) can be used to provide early warning of upcoming hypo-/hyperglycemic events and thus to improve the patient's safety. To increase prediction accuracy and efficiency, various approaches have been proposed which combine multiple predictors to produce superior results compared to single predictors. Three methods for model fusion are presented and comparatively assessed.

View Article and Find Full Text PDF

Computer vision-based food recognition could be used to estimate a meal's carbohydrate content for diabetic patients. This study proposes a methodology for automatic food recognition, based on the bag-of-features (BoF) model. An extensive technical investigation was conducted for the identification and optimization of the best performing components involved in the BoF architecture, as well as the estimation of the corresponding parameters.

View Article and Find Full Text PDF

Artificial pancreas is in the forefront of research towards the automatic insulin infusion for patients with type 1 diabetes. Due to the high inter- and intra-variability of the diabetic population, the need for personalized approaches has been raised. This study presents an adaptive, patient-specific control strategy for glucose regulation based on reinforcement learning and more specifically on the Actor-Critic (AC) learning approach.

View Article and Find Full Text PDF

A novel adaptive approach for glucose control in individuals with type 1 diabetes under sensor-augmented pump therapy is proposed. The controller, is based on Actor-Critic (AC) learning and is inspired by the principles of reinforcement learning and optimal control theory. The main characteristics of the proposed controller are (i) simultaneous adjustment of both the insulin basal rate and the bolus dose, (ii) initialization based on clinical procedures, and (iii) real-time personalization.

View Article and Find Full Text PDF

Background: Prediction of glycemic profile is an important task for both early recognition of hypoglycemia and enhancement of the control algorithms for optimization of insulin infusion rate. Adaptive models for glucose prediction and recognition of hypoglycemia based on statistical and artificial intelligence techniques are presented.

Methods: We compared an autoregressive (AR) model using only glucose information, an AR model with external insulin input (ARX), and an artificial neural network (ANN) using both glucose and insulin information.

View Article and Find Full Text PDF

Background: Through this paper, we present the initial steps for the creation of an integrated platform for the provision of a series of eHealth tools and services to both citizens and travelers in isolated areas of the southeast Mediterranean, and on board ships travelling across it. The platform was created through an INTERREG IIIB ARCHIMED project called INTERMED.

Methods: The support of primary healthcare, home care and the continuous education of physicians are the three major issues that the proposed platform is trying to facilitate.

View Article and Find Full Text PDF

This paper aims at the development and evaluation of a personalized insulin infusion advisory system (IIAS), able to provide real-time estimations of the appropriate insulin infusion rate for type 1 diabetes mellitus (T1DM) patients using continuous glucose monitors and insulin pumps. The system is based on a nonlinear model-predictive controller (NMPC) that uses a personalized glucose-insulin metabolism model, consisting of two compartmental models and a recurrent neural network. The model takes as input patient's information regarding meal intake, glucose measurements, and insulin infusion rates, and provides glucose predictions.

View Article and Find Full Text PDF

The purpose of the present manuscript is to present the advances performed in medicine using a Personalized Decision Support System (PDSS). The models used in Decision Support Systems (DSS) are examined in combination with Genome Information and Biomarkers to produce personalized result for each individual. The concept of personalize medicine is described in depth and application of PDSS for Cardiovascular Diseases (CVD) and Type-1 Diabetes Mellitus (T1DM) are analyzed.

View Article and Find Full Text PDF

Background: Obesity is a multifactorial trait, which comprises an independent risk factor for cardiovascular disease (CVD). The aim of the current work is to study the complex etiology beneath obesity and identify genetic variations and/or factors related to nutrition that contribute to its variability. To this end, a set of more than 2300 white subjects who participated in a nutrigenetics study was used.

View Article and Find Full Text PDF

SMARTDIAB is a platform designed to support the monitoring, management, and treatment of patients with type 1 diabetes mellitus (T1DM), by combining state-of-the-art approaches in the fields of database (DB) technologies, communications, simulation algorithms, and data mining. SMARTDIAB consists mainly of two units: 1) the patient unit (PU); and 2) the patient management unit (PMU), which communicate with each other for data exchange. The PMU can be accessed by the PU through the internet using devices, such as PCs/laptops with direct internet access or mobile phones via a Wi-Fi/General Packet Radio Service access network.

View Article and Find Full Text PDF

Clinical studies indicate that exaggerated postprandial lipemia is linked to the progression of atherosclerosis, leading cause of Cardiovascular Diseases (CVD). CVD is a multi-factorial disease with complex etiology and according to the literature postprandial Triglycerides (TG) can be used as an independent CVD risk factor. Aim of the current study is to construct an Artificial Neural Network (ANN) based system for the identification of the most important gene-gene and/or gene-environmental interactions that contribute to a fast or slow postprandial metabolism of TG in blood and consequently to investigate the causality of postprandial TG response.

View Article and Find Full Text PDF

In this paper, an Insulin Infusion Advisory System (IIAS) for Type 1 diabetes patients, which use insulin pumps for the Continuous Subcutaneous Insulin Infusion (CSII) is presented. The purpose of the system is to estimate the appropriate insulin infusion rates. The system is based on a Non-Linear Model Predictive Controller (NMPC) which uses a hybrid model.

View Article and Find Full Text PDF

Aim of this paper is to evaluate the diagnostic contribution of various types of texture features in discrimination of hepatic tissue in abdominal non-enhanced Computed Tomography (CT) images. Regions of Interest (ROIs) corresponding to the classes: normal liver, cyst, hemangioma, and hepatocellular carcinoma were drawn by an experienced radiologist. For each ROI, five distinct sets of texture features are extracted using First Order Statistics (FOS), Spatial Gray Level Dependence Matrix (SGLDM), Gray Level Difference Method (GLDM), Laws' Texture Energy Measures (TEM), and Fractal Dimension Measurements (FDM).

View Article and Find Full Text PDF

This paper is focused on the integration of state-of-the-art technologies in the fields of telecommunications, simulation algorithms, and data mining in order to develop a Type 1 diabetes patient's semi to fully-automated monitoring and management system. The main components of the system are a glucose measurement device, an insulin delivery system (insulin injection or insulin pumps), a mobile phone for the GPRS network, and a PDA or laptop for the Internet. In the medical environment, appropriate infrastructure for storage, analysis and visualizing of patients' data has been implemented to facilitate treatment design by health care experts.

View Article and Find Full Text PDF

In this paper two models for the simulation of glucose-insulin metabolism of children with Type 1 diabetes are presented. The models are based on the combined use of Compartmental Models (CMs) and artificial Neural Networks (NNs). Data from children with Type 1 diabetes, stored in a database, have been used as input to the models.

View Article and Find Full Text PDF

Objectives: The aim of the present study is to define an optimally performing computer-aided diagnosis (CAD) architecture for the classification of liver tissue from non-enhanced computed tomography (CT) images into normal liver (C1), hepatic cyst (C2), hemangioma (C3), and hepatocellular carcinoma (C4). To this end, various CAD architectures, based on texture features and ensembles of classifiers (ECs), are comparatively assessed.

Materials And Methods: Number of regions of interests (ROIs) corresponding to C1-C4 have been defined by experienced radiologists in non-enhanced liver CT images.

View Article and Find Full Text PDF

Quantitative characterisation of carotid atherosclerosis and classification into symptomatic or asymptomatic is crucial in planning optimal treatment of atheromatous plaque. The computer-aided diagnosis (CAD) system described in this paper can analyse ultrasound (US) images of carotid artery and classify them into symptomatic or asymptomatic based on their echogenicity characteristics. The CAD system consists of three modules: a) the feature extraction module, where first-order statistical (FOS) features and Laws' texture energy can be estimated, b) the dimensionality reduction module, where the number of features can be reduced using analysis of variance (ANOVA), and c) the classifier module consisting of a neural network (NN) trained by a novel hybrid method based on genetic algorithms (GAs) along with the back propagation algorithm.

View Article and Find Full Text PDF

In this paper, a computer-aided diagnostic (CAD) system for the classification of hepatic lesions from computed tomography (CT) images is presented. Regions of interest (ROIs) taken from nonenhanced CT images of normal liver, hepatic cysts, hemangiomas, and hepatocellular carcinomas have been used as input to the system. The proposed system consists of two modules: the feature extraction and the classification modules.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: