An attached-growth continuous flow hydrogenotrophic denitrification system was investigated for groundwater treatment. Two bench-scale packed-bed reactors were used in series, without external pH adjustment or carbon source addition, while inorganic carbonate salts already contained in the groundwater were the sole carbon source used by the denitrifying bacteria. The hydrogen was produced by water electrolysis using renewable energy sources thus minimizing resource-draining factors of the treatment process.
View Article and Find Full Text PDFAdvances in medicine and biotechnology rely on a deep understanding of biological processes. Despite the increasingly available types and amounts of omics data, significant knowledge gaps remain, with current approaches to identify and curate missing annotations being limited to a set of already known reactions. Here, we introduce etwork ntegrated omputational xplorer for ap nnotation of tabolism (NICEgame), a workflow to identify and curate nonannotated metabolic functions in genomes using the ATLAS of Biochemistry and genome-scale metabolic models (GEMs).
View Article and Find Full Text PDFDuring the last two decades nitrate contaminated groundwater has become an extensive worldwide problem with wide-reaching negative effects on human health and the environment. In this study, a combination of electrocoagulation (EC) and electrooxidation (EO) was studied as a denitrification process to efficiently remove nitrates and ammonium (a by-product produced during EC) from real polluted groundwater. Initially, EC experiments under batch operating mode were performed using iron electrodes at different applied current density values (20-40 mA cm).
View Article and Find Full Text PDF, which is model oleaginous yeast with high industrial interest, was cultivated on fatty substrates. Data concerning fatty acid composition of both substrate and yeast lipids and comparisons of the experimental data with model predictions presented in "Biomodification of fats and oils and scenarios of adding value on renewable fatty materials through microbial fermentations: Modelling and trials with " (Vasiliadou et al., 2018) were provided.
View Article and Find Full Text PDFThe present study aimed at developing an integrated mathematical model for the composting process of olive mill waste. The multi-component model was developed to simulate the composting of three-phase olive mill solid waste with olive leaves and different materials as bulking agents. The modeling system included heat transfer, organic substrate degradation, oxygen consumption, carbon dioxide production, water content change, and biological processes.
View Article and Find Full Text PDFIn the present study, indigenous microorganisms from industrial sludge were used to reduce the activity of Cr(VI). Molasses, a by-product of sugar processing, was selected as the carbon source (instead of sugar used in a previous work) as it is a low-cost energy source for bioprocesses. Initially, experiments were carried out in suspended growth batch reactors for Cr(VI) concentrations of 1.
View Article and Find Full Text PDFThe kinetics of hexavalent chromium bio-reduction in draw-fill suspended and attached growth reactors was examined using sugar as substrate and indigenous microorganisms from the industrial sludge of the Hellenic Aerospace Industry. Initially, experiments in suspended growth batch reactors for Cr (VI) concentrations of 1.4-110 mg/l were carried out, to extensively study the behaviour of a mixed culture.
View Article and Find Full Text PDFWe examine the conditions necessary for the emergence of complex dynamic behavior in systems of microbial competition. In particular, we study the effect of spatial heterogeneity and substrate-inhibition on the dynamics of such a system. This is accomplished through the study of a mathematical model of two microbial populations competing for a single nutrient in a configuration of two interconnected chemostats.
View Article and Find Full Text PDF