This study addresses the complex challenge of Nurse Rostering (NR) in oncology departments, a critical component of healthcare management affecting operational efficiency and patient care quality. Given the intricate dynamics of healthcare settings, particularly in oncology clinics, where patient needs are acute and unpredictable, optimizing nurse schedules is paramount for enhancing care delivery and staff satisfaction. Employing advanced Integer Programming (IP) techniques, this research develops a comprehensive model to optimise NR.
View Article and Find Full Text PDFWe investigate whether it is possible to distinguish chaotic time series from random time series using network theory. In this perspective, we selected four methods to generate graphs from time series: the natural, the horizontal, the limited penetrable horizontal visibility graph, and the phase space reconstruction method. These methods claim that the distinction of chaos from randomness is possible by studying the degree distribution of the generated graphs.
View Article and Find Full Text PDFThe COVID-19 pandemic has had an unprecedented impact on the global economy and financial markets. In this article, we explore the impact of the pandemic on the weak-form efficiency of the cryptocurrency and forex markets by conducting a comprehensive comparative analysis of the two markets. To estimate the weak-form of market efficiency, we utilize the asymmetric market deficiency measure (MDM) derived using the asymmetric multifractal detrended fluctuation analysis (A-MF-DFA) approach, along with fuzzy entropy, Tsallis entropy, and Fisher information.
View Article and Find Full Text PDFThis article investigates the dynamical complexity and fractal characteristics changes of the Bitcoin/US dollar (BTC/USD) and Euro/US dollar (EUR/USD) returns in the period before and after the outbreak of the COVID-19 pandemic. More specifically, we applied the asymmetric multifractal detrended fluctuation analysis (A-MF-DFA) method to investigate the temporal evolution of the asymmetric multifractal spectrum parameters. In addition, we examined the temporal evolution of Fuzzy entropy, non-extensive Tsallis entropy, Shannon entropy, and Fisher information.
View Article and Find Full Text PDFIn this paper, we present a new method for successfully simulating the dynamics of COVID-19, experimentally focusing on the third wave. This method, namely, the Method of Parallel Trajectories (MPT), is based on the recently introduced self-organized diffusion model. According to this method, accurate simulation of the dynamics of the COVID-19 infected population evolution is accomplished by considering not the total data for the infected population, but successive segments of it.
View Article and Find Full Text PDFMicromachines (Basel)
December 2021
Cellular Nonlinear Networks (CNN) are a concept introduced in 1988 by Leon Chua and Lin Yang as a bio-inspired architecture capable of massively parallel computation. Since then, CNN have been enhanced by incorporating designs that incorporate memristors to profit from their processing and memory capabilities. In addition, Stochastic Computing (SC) can be used to optimize the quantity of required processing elements; thus it provides a lightweight approximate computing framework, quite accurate and effective, however.
View Article and Find Full Text PDFRecently, it has been successfully shown that the temporal evolution of the fraction of COVID-19 infected people possesses the same dynamics as the ones demonstrated by a self-organizing diffusion model over a lattice, in the frame of universality. In this brief, the relevant emerging dynamics are further investigated. Evidence that this nonlinear model demonstrates critical dynamics is scrutinized within the frame of the physics of critical phenomena.
View Article and Find Full Text PDFResistive Random Access Memories (RRAMs) are based on resistive switching (RS) operation and exhibit a set of technological features that make them ideal candidates for applications related to non-volatile memories, neuromorphic computing and hardware cryptography. For the full industrial development of these devices different simulation tools and compact models are needed in order to allow computer-aided design, both at the device and circuit levels. Most of the different RRAM models presented so far in the literature deal with temperature effects since the physical mechanisms behind RS are thermally activated; therefore, an exhaustive description of these effects is essential.
View Article and Find Full Text PDFInt J Environ Res Public Health
September 2020
The self-organizing mechanism is a universal approach that is widely followed in nature. In this work, a novel self-organizing model describing diffusion over a lattice is introduced. Simulation results for the model's active lattice sites demonstrate an evolution curve that is very close to those describing the evolution of infected European populations by COVID-19.
View Article and Find Full Text PDFThe most common type of prostate cancer is acinar adenocarcinoma, which is androgen-dependent and, therefore, treated with chemical or surgical castration and androgen receptor inhibition. However, the disease usually progresses to castration-resistant prostate cancer (CRPC). A neuroendocrine pattern is frequently observed in the cellular composition of CRPC, which is considered to emerge as an effect of androgen deprivation therapy.
View Article and Find Full Text PDFMerkel cell carcinoma (MCC) is a rare and aggressive type of neuroendocrine cancer of the skin. It predominantly affects the elderly, with a predilection for the sun-exposed skin of the head and neck. Risk factors include immune-suppressing diseases, such as human immunodeficiency virus (HIV), chronic lymphocytic leukemia and multiple myeloma, organ transplantation, and the presence of the newly-identified Merkel cell polyomavirus (MCPyV).
View Article and Find Full Text PDFRattleback is a canoe-shaped object, already known from ancient times, exhibiting a nontrivial rotational behaviour. Although its shape looks symmetric, its kinematic behaviour seems to be asymmetric. When spun in one direction it normally rotates, but when it is spun in the other direction it stops rotating and oscillates until it finally starts rotating in the other direction.
View Article and Find Full Text PDF