Publications by authors named "Staver A"

Insect herbivory plays a crucial role in shaping plant communities in many terrestrial ecosystems. However, in African savannas, insect herbivory has been relatively understudied compared to large mammalian herbivory. In this study, we examined the impact of insect herbivory, focusing on leaf chewers and miners, in a South African savanna-forest mosaic (including patches of forest, thicket and savanna) in Hluhluwe iMfolozi Park, South Africa.

View Article and Find Full Text PDF

Fire and herbivory interact to alter ecosystems and carbon cycling. In savannas, herbivores can reduce fire activity by removing grass biomass, but the size of these effects and what regulates them remain uncertain. To examine grazing effects on fuels and fire regimes across African savannas, we combined data from herbivore exclosure experiments with remotely sensed data on fire activity and herbivore density.

View Article and Find Full Text PDF

Increasing atmospheric CO is changing the dynamics of tropical savanna vegetation. C trees and grasses are known to experience CO fertilization, whereas responses to CO by C grasses are more ambiguous. Here, we sample stable carbon isotope trends in herbarium collections of South African C and C grasses to reconstruct C discrimination.

View Article and Find Full Text PDF

We analyze a spatially extended version of a well-known model of forest-savanna dynamics, which presents as a system of nonlinear partial integro-differential equations, and study necessary conditions for pattern-forming bifurcations. Homogeneous solutions dominate the dynamics of the standard forest-savanna model, regardless of the length scales of the various spatial processes considered. However, several different pattern-forming scenarios are possible upon including spatial resource limitation, such as competition for water, soil nutrients, or herbivory effects.

View Article and Find Full Text PDF
Article Synopsis
  • Fire has a significant impact on herbaceous vegetation, with increased abundance observed after fires at various global sites, particularly in wetter and cooler ecosystems.
  • In savannas, the response to fire is much stronger than in forests, with herbaceous vegetation being 4.8 times more abundant in burned areas compared to unburned ones.
  • The study highlights that fire plays a crucial role in maintaining the vegetation structure in both savanna and forest ecosystems, affecting grass cover differently in these environments.
View Article and Find Full Text PDF

Termites consume substantial amounts of plant material across tropical and subtropical ecosystems. During the process of lignocellulose digestion, the symbiotic methanogenesis within termites' guts produces the potent greenhouse gas methane (CH ). Termites contribute an estimated 1%-5% of global CH emissions, with these estimates derived from the product of termite biomass and termite CH production rate per unit of termite biomass.

View Article and Find Full Text PDF

Grassy biomes are >20 million years old but are undervalued and under threat today.

View Article and Find Full Text PDF

The biogeochemical signature of fire shapes the functioning of many ecosystems. Fire changes nutrient cycles not only by volatilizing plant material, but also by altering organic matter decomposition, a process regulated by soil extracellular enzyme activities (EEAs). However, our understanding of fire effects on EEAs and their feedbacks to nutrient cycles is incomplete.

View Article and Find Full Text PDF

Modeling fire spread as an infection process is intuitive: An ignition lights a patch of fuel, which infects its neighbor, and so on. Infection models produce nonlinear thresholds, whereby fire spreads only when fuel connectivity and infection probability are sufficiently high. These thresholds are fundamental both to managing fire and to theoretical models of fire spread, whereas applied fire models more often apply quasi-empirical approaches.

View Article and Find Full Text PDF

Fire is an important climate-driven disturbance in terrestrial ecosystems, also modulated by human ignitions or fire suppression. Changes in fire emissions can feed back on the global carbon cycle, but whether the trajectories of changing fire activity will exacerbate or attenuate climate change is poorly understood. Here, we quantify fire dynamics under historical and future climate and human demography using a coupled global climate–fire–carbon cycle model that emulates 34 individual Earth system models (ESMs).

View Article and Find Full Text PDF

Savannas cover a fifth of the land surface and contribute a third of terrestrial net primary production, accounting for three-quarters of global area burned and more than half of global fire-driven carbon emissions. Fire suppression and afforestation have been proposed as tools to increase carbon sequestration in these ecosystems. A robust quantification of whole-ecosystem carbon storage in savannas is lacking however, especially under altered fire regimes.

View Article and Find Full Text PDF

Seasonal diet shifts and migration are key components of large herbivore population dynamics, but we lack a systematic understanding of how these behaviours are distributed on a macroecological scale. The prevalence of seasonal strategies is likely related to herbivore body size and feeding guild, and may also be influenced by properties of the environment, such as soil nutrient availability and climate seasonality. We evaluated the distribution of seasonal dietary shifts and migration across large-bodied mammalian herbivores and determined how these behaviours related to diet, body size and environment.

View Article and Find Full Text PDF

Fire activity varies substantially at global scales because of the influence of climate, but at broad spatiotemporal scales, the possible effects of herbivory on fire activity are unknown. Here, we used late Quaternary large-bodied herbivore extinctions as a global exclusion experiment to examine the responses of grassy ecosystem paleofire activity (through charcoal proxies) to continental differences in extinction severity. Grassy ecosystem fire activity increased in response to herbivore extinction, with larger increases on continents that suffered the largest losses of grazers; browser declines had no such effect.

View Article and Find Full Text PDF

Widespread woody encroachment is a prominent concern for savanna systems as it is often accompanied by losses in productivity and biodiversity. Extensive ecosystem-level work has advanced our understanding of its causes and consequences. However, there is still debate over whether local management can override regional and global drivers of woody encroachment, and it remains largely unknown how encroachment influences woody community assemblages.

View Article and Find Full Text PDF

The frequency distributions can characterize the population-potential landscape related to the stability of ecological states. We illustrate the practical utility of this approach by analyzing a forest-savanna model. Savanna and forest states coexist under certain conditions, consistent with past theoretical work and empirical observations.

View Article and Find Full Text PDF

Though elephants are a major cause of savanna tree mortality and threaten vulnerable tree species, managing their impact remains difficult, in part because relatively little is known about how elephant impacts are distributed throughout space.This is exacerbated by uncertainty about what determines the distribution of elephants themselves, as well as whether the distribution of elephants is even informative for understanding the distribution of their impacts.To better understand the factors that underlie elephant impacts, we modeled elephant distributions and their damage to trees with respect to soil properties, water availability, and vegetation in Kruger National Park, South Africa, using structural equation modeling.

View Article and Find Full Text PDF

Global change is shifting disturbance regimes that may rapidly change ecosystems, sometimes causing ecosystems to shift between states. Interactions between disturbances such as fire and disease could have especially severe effects, but experimental tests of multi-decadal changes in disturbance regimes are rare. Here, we surveyed vegetation for 35 years in a 54-year fire frequency experiment in a temperate oak savanna-forest ecotone that experienced a recent outbreak of oak wilt.

View Article and Find Full Text PDF
Article Synopsis
  • Global changes have altered fire regimes, affecting tree communities in both savanna and forest ecosystems across various climates.
  • Fire frequency significantly impacts tree populations, with an average increase in fire occurrences leading to a 48% reduction in stem density and a 53% decrease in basal area after 50 years compared to unburned areas.
  • The interaction between fire characteristics, climate (wet vs. dry seasons), and tree species traits, especially in terms of soil nutrient changes, plays a critical role in determining how tree communities respond to these fire regime shifts.
View Article and Find Full Text PDF

The idea that tropical forest and savanna are alternative states is crucial to how we manage these biomes and predict their future under global change. Large-scale empirical evidence for alternative stable states is limited, however, and comes mostly from the multimodal distribution of structural aspects of vegetation. These approaches have been criticized, as structure alone cannot separate out wetter savannas from drier forests for example, and there are also technical challenges to mapping vegetation structure in unbiased ways.

View Article and Find Full Text PDF

African savannas are home to the world's last great megafaunal communities, but despite ongoing population declines, we only poorly understand the constraints on savanna herbivore abundances. Seasonal diet shifts (except migration) have received little attention, despite a diversity of possible dietary strategies. Here, we first formulate two theoretical models that predict that both mixed feeding and migratory grazing increase population sizes.

View Article and Find Full Text PDF

Madagascar is regarded by some as one of the most degraded landscapes on Earth, with estimates suggesting that 90% of forests have been lost to indigenous Tavy farming. However, the extent of this degradation has been challenged: paleoecological data, phylogeographic analysis, and species richness indicate that pyrogenic savannas in central Madagascar predate human arrival, even though rainfall is sufficient to allow forest expansion into central Madagascar. These observations raise a question-if savannas in Madagascar are not anthropogenic, how then are they maintained in regions where the climate can support forest? Observation reveals that the savanna-forest boundary coincides with a dispersal barrier-the escarpment of the Central Plateau.

View Article and Find Full Text PDF

Global change may induce changes in savanna and forest distributions, but the dynamics of these changes remain unclear. Classical biome theory suggests that climate is predictive of biome distributions, such that shifts will be continuous and reversible. This view, however, cannot explain the overlap in the climatic ranges of tropical biomes, which some argue may result from fire-vegetation feedbacks, maintaining savanna and forest as bistable states.

View Article and Find Full Text PDF

Dimensions of tree root systems in savannas are poorly understood, despite being essential in resource acquisition and post-disturbance recovery. We studied tree rooting patterns in Southern African savannas to ask: how tree rooting strategies affected species responses to severe drought; and how potential rooting depths varied across gradients in soil texture and rainfall. First, detailed excavations of eight species in Kruger National Park suggest that the ratio of deep to shallow taproot diameters provides a reasonable proxy for potential rooting depth, facilitating extensive interspecific comparison.

View Article and Find Full Text PDF

Shrub encroachment, forest decline and wildfires have caused large-scale changes in semi-arid vegetation over the past 50 years. Climate is a primary determinant of plant growth in semi-arid ecosystems, yet it remains difficult to forecast large-scale vegetation shifts (i.e.

View Article and Find Full Text PDF

Tree cover differentiates forests from savannas and grasslands. In tropical floodplains, factors differentiating these systems are poorly known, even though floodplains cover 10% of the tropical landmass. Seasonal inundation potentially presents trees with both challenges (soil anoxia) and benefits (moisture and nutrient deposition), the relative importance of which may depend on ecological context, e.

View Article and Find Full Text PDF