Publications by authors named "Staude I"

High-order harmonic generation (HHG) in solids opens new frontiers in ultrafast spectroscopy of carrier and field dynamics in condensed matter, picometer resolution structural lattice characterization and designing compact platforms for attosecond pulse sources. Nanoscale structuring of solid surfaces provides a powerful tool for controlling the spatial characteristics and efficiency of the harmonic emission. Here we study HHG in a prototypical phase-change material GeSbTe (GST).

View Article and Find Full Text PDF

Gallium phosphide (GaP) offers unique opportunities for nonlinear and quantum nanophotonics due to its wide optical transparency range, high second-order nonlinear susceptibility, and the possibility to tailor the nonlinear response by a suitable choice of crystal orientation. However, the availability of single crystalline thin films of GaP on low index substrates, as typically required for nonlinear dielectric metasurfaces, is limited. Here we designed and experimentally realized monolithic GaP metasurfaces for enhanced and tailored second harmonic generation (SHG).

View Article and Find Full Text PDF
Article Synopsis
  • The study examines how valley degrees of freedom in two-dimensional transition metal dichalcogenides, like molybdenum disulfide, could influence future electronic devices.
  • Researchers investigate the interaction between valley-specific light emission and a resonant plasmonic nanosphere to understand its effects on circular polarization.
  • The findings show unexpected depolarization of light, providing essential insights into light-matter interactions and paving the way for advanced valleytronic device development.
View Article and Find Full Text PDF

The loss of wild plant populations is often assumed to lead to coextinctions, particularly among specialized insects. Despite global declines in both terrestrial insects and plants, the relationship between these trends remains elusive. Here, we address this gap by analyzing the relationship between population trends of insects and their host plants in Germany, encompassing over 150,000 interactions among 3,429 plant and 2,239 insect species, including both pollinators (bees and hoverflies) and herbivores (butterflies, moths, and sawflies).

View Article and Find Full Text PDF
Article Synopsis
  • Climate change often leads to habitat shifts for species towards the poles, but other factors also play a significant role in determining species distribution.
  • A study on European forest plants shows that they are more likely to shift westward rather than northward, with westward movements being 2.6 times more common.
  • These shifts are primarily driven by nitrogen deposition and recovery from past pollution, indicating that biodiversity changes are influenced by multiple environmental factors, not just climate change alone.
View Article and Find Full Text PDF

Entangled photon-pair sources are at the core of quantum applications like quantum key distribution, sensing, and imaging. Operation in space-limited and adverse environments such as in satellite-based and mobile communication requires robust entanglement sources with minimal size and weight requirements. Here, we meet this challenge by realizing a cubic micrometer scale entangled photon-pair source in a 3R-stacked transition metal dichalcogenide crystal.

View Article and Find Full Text PDF

The ability to detect and image short-wave infrared light has important applications in surveillance, autonomous navigation, and biological imaging. However, the current infrared imaging technologies often pose challenges due to large footprint, large thermal noise and inability to augment infrared and visible imaging. Here, infrared imaging is demonstrated by nonlinear up-conversion to the visible in an ultra-compact, high-quality-factor lithium niobate resonant metasurface.

View Article and Find Full Text PDF

Metasurfaces have recently risen to prominence in optical research, providing unique functionalities that can be used for imaging, beam forming, holography, polarimetry, and many more, while keeping device dimensions small. Despite the fact that a vast range of basic metasurface designs has already been thoroughly studied in the literature, the number of metasurface-related papers is still growing at a rapid pace, as metasurface research is now spreading to adjacent fields, including computational imaging, augmented and virtual reality, automotive, display, biosensing, nonlinear, quantum and topological optics, optical computing, and more. At the same time, the ability of metasurfaces to perform optical functions in much more compact optical systems has triggered strong and constantly growing interest from various industries that greatly benefit from the availability of miniaturized, highly functional, and efficient optical components that can be integrated in optoelectronic systems at low cost.

View Article and Find Full Text PDF

Optical communication can be revolutionized by encoding data into the orbital angular momentum of light beams. However, state-of-the-art approaches for dynamic control of complex optical wavefronts are mainly based on liquid crystal spatial light modulators or miniaturized mirrors, which suffer from intrinsically slow (µs-ms) response times. Here, we experimentally realize a hybrid meta-optical system that enables complex control of the wavefront of light with pulse-duration limited dynamics.

View Article and Find Full Text PDF

For the realization of truly reconfigurable metasurface technologies, dynamic spatial tuning of the metasurface resonance is required. Here we report the use of organic photoswitches as a means for the light-induced spatial tuning of metasurface resonances. Coating of a dielectric metasurface, hosting high-quality-factor resonances, with a spiropyran (SPA)-containing polymer enabled dynamic resonance tuning up to 4 times the resonance full-width at half-maximum with arbitrary spatial precision.

View Article and Find Full Text PDF

Manipulation of magnetic dipole emission with resonant photonic nanostructures is of great interest for both fundamental research and applications. However, obtaining selective control over the emission properties of magnetic dipole transitions is challenging, as they usually occur within a manifold of spectrally close emission lines associated with different spin states of the involved electronic levels. Here we demonstrate spectrally selective directional tailoring of magnetic dipole emission using designed photonic nanostructures featuring a high quality factor.

View Article and Find Full Text PDF

Thanks to their long lifetime, spin-forbidden dark excitons in transition metal dichalcogenides are promising candidates for storage applications in opto-electronics and valleytronics. To date, their study has been hindered by inefficient generation mechanisms and the necessity for elaborate detection schemes. In this work, we propose a new hybrid platform that simultaneously addresses both challenges.

View Article and Find Full Text PDF

In nanophotonics and quantum optics, we aim to control and manipulate light with tailored nanoscale structures. Hybrid systems of nanostructures and atomically thin materials are of interest here, as they offer rich physics and versatility due to the interaction between photons, plasmons, phonons, and excitons. In this study, we explore the optical and electronic properties of a hybrid system, a naturally n-doped monolayer WS covering a gold disk.

View Article and Find Full Text PDF
Article Synopsis
  • Conservation gardening (CG) is a new approach aimed at reversing the decline of native plant species while transforming gardening practices into effective conservation tools, though there is limited information about suitable plants for gardening and their availability.
  • The study used Germany as a case study to create a user-friendly app that offers localized lists of plants suitable for conservation gardening, noting that a significant number of red-listed species can be integrated into gardens.
  • The findings suggest that many of these plants are drought-tolerant and low-fertilizer users, indicating CG's potential for urban planning and climate adaptation while also serving as vital refuges for biodiversity.
View Article and Find Full Text PDF

Human activities erode geographic barriers, facilitating hybridization among previously isolated taxa. However, limited empirical research exists on the consequences of introduced species (neophytes) for hybridization and subsequent evolutionary outcomes. To address this knowledge gap, we employed a macroecological approach.

View Article and Find Full Text PDF

The capability of tailoring the resonance wavelength of metasurfaces is important as it can alleviate the manufacturing precision required to produce the exact structure according to the design of the nanoresonators. Tuning of Fano resonances by applying heat has been theoretically predicted in the case of silicon metasurfaces. Here, we experimentally demonstrate the permanent tailoring of quasi-bound states in the continuum (quasi-BIC) resonance wavelength in an a-Si:H metasurface and quantitatively analyze the modification in the -factor with gradual heating.

View Article and Find Full Text PDF

With conventional electronics reaching performance and size boundaries, all-optical processes have emerged as ideal building blocks for high speed and low power consumption devices. A promising approach in this direction is provided by valleytronics in atomically thin semiconductors, where light-matter interaction allows to write, store, and read binary information into the two energetically degenerate but non-equivalent valleys. Here, nonlinear valleytronics in monolayer WSe is investigated and show that an individual ultrashort pulse with a photon energy tuned to half of the optical band-gap can be used to simultaneously excite (by coherent optical Stark shift) and detect (by a rotation in the polarization of the emitted second harmonic) the valley population.

View Article and Find Full Text PDF

Semiconductor nanowire lasers can be subject to modifications of their lasing threshold resulting from a variation of their environment. A promising choice is to use metallic substrates to gain access to low-volume Surface-Plasmon-Polariton (SPP) modes. We introduce a simple, yet quantitatively precise model that can serve to describe mode competition in nanowire lasers on metallic substrates.

View Article and Find Full Text PDF

Ungulate populations are increasing across Europe with important implications for forest plant communities. Concurrently, atmospheric nitrogen (N) deposition continues to eutrophicate forests, threatening many rare, often more nutrient-efficient, plant species. These pressures may critically interact to shape biodiversity as in grassland and tundra systems, yet any potential interactions in forests remain poorly understood.

View Article and Find Full Text PDF

We report for the first time the direct growth of molybdenum disulfide (MoS) monolayers on nanostructured silicon-on-insulator waveguides. Our results indicate the possibility of utilizing the Chemical Vapour Deposition (CVD) on nanostructured photonic devices in a scalable process. Direct growth of 2D material on nanostructures rectifies many drawbacks of the transfer-based approaches.

View Article and Find Full Text PDF

The control of plasmon-nanoemitter interactions at the nanoscale enables the tailored modulation of optical properties, namely, the photoluminescence (PL) intensity of the nanoemitters. In this contribution, using a nanometer-thick poly[(2-diethylamino) ethyl methacrylate] (39 to 74 nm) as pH responsive spacer layer (p ∼ 6 to 6.5) between a plasmonic gold film and CdSe/ZnS Quantum Dots (QDs) nanoemitters, we could achieve reversible pH-responsive PL switching in QDs.

View Article and Find Full Text PDF

Species turnover is ubiquitous. However, it remains unknown whether certain types of species are consistently gained or lost across different habitats. Here, we analysed the trajectories of 1827 plant species over time intervals of up to 78 years at 141 sites across mountain summits, forests, and lowland grasslands in Europe.

View Article and Find Full Text PDF

Conventional optical diffusers, such as thick volume scatterers (Rayleigh scattering) or microstructured surface scatterers (geometric scattering), lack the potential for on-chip integration and are thus incompatible with next-generation photonic devices. Dielectric Huygens' metasurfaces, on the other hand, consist of 2D arrangements of resonant dielectric nanoparticles and therefore constitute a promising material platform for ultrathin and highly efficient photonic devices. When the nanoparticles are arranged in a random but statistically specific fashion, diffusers with exceptional properties are expected to come within reach.

View Article and Find Full Text PDF

All-dielectric optical metasurfaces are a workhorse in nano-optics, because of both their ability to manipulate light in different degrees of freedom and their excellent performance at light frequency conversion. Here, we demonstrate first-time generation of photon pairs via spontaneous parametric-down conversion in lithium niobate quantum optical metasurfaces with electric and magnetic Mie-like resonances at various wavelengths. By engineering the quantum optical metasurface, we tailor the photon-pair spectrum in a controlled way.

View Article and Find Full Text PDF