The resonant excitation of electronic transitions with coherent laser sources creates quantum coherent superpositions of the involved electronic states. Most time-resolved studies have focused on gases or isolated subsystems embedded in insulating solids, aiming for applications in quantum information. Here, we focus on the coherent control of orbital wavefunctions in the correlated quantum material TbTiO, which forms an interacting spin liquid ground state.
View Article and Find Full Text PDFThe interaction of magnetic order and spontaneous polarization is a fundamental coupling with the prospect for the control of electronic properties and magnetism. The connection among magnetic order, charge localization and associated metal-insulator transition (MIT) are cornerstones for materials control. Materials that combine both effects are therefore of great interest for testing models that claim the occurrence of spontaneous polarization from magnetic and charge order.
View Article and Find Full Text PDFSurface acoustic waves (SAWs) are excited by femtosecond extreme ultraviolet (EUV) transient gratings (TGs) in a room-temperature ferrimagnetic DyCo alloy. TGs are generated by crossing a pair of EUV pulses from a free electron laser with the wavelength of 20.8 nm matching the Co -edge, resulting in a SAW wavelength of Λ = 44 nm.
View Article and Find Full Text PDFQuantifying the dynamics of normal modes and how they interact with other excitations is of central importance in condensed matter. Spin-lattice coupling is relevant to several sub-fields of condensed matter physics; examples include spintronics, high-T superconductivity, and topological materials. However, experimental approaches that can directly measure it are rare and incomplete.
View Article and Find Full Text PDFRecently, a highly ordered Moiré dislocation lattice was identified at the interface between a SrTiO (STO) thin film and the (LaAlO)(SrTaAlO) (LSAT) substrate. A fundamental understanding of the local ionic and electronic structures around the dislocation cores is crucial to further engineer the properties of these complex multifunctional heterostructures. Here, we combine experimental characterization via analytical scanning transmission electron microscopy with results of molecular dynamics and density functional theory calculations to gain insights into the structure and defect chemistry of these dislocation arrays.
View Article and Find Full Text PDFResonant absorption of a photon by bound electrons in a solid can promote an electron to another orbital state or transfer it to a neighboring atomic site. Such a transition in a magnetically ordered material could affect the magnetic order. While this process is an obvious road map for optical control of magnetization, experimental demonstration of such a process remains challenging.
View Article and Find Full Text PDFUltrafast optical manipulation of magnetic phenomena is an exciting achievement of mankind, expanding one's horizon of knowledge toward the functional nonequilibrium states. The dynamics acting on an extremely short timescale push the detection limits that reveal fascinating light-matter interactions for nonthermal creation of effective magnetic fields. While some cases are benchmarked by emergent transient behaviors, otherwise identifying the nonthermal effects remains challenging.
View Article and Find Full Text PDFThe concept of chirality is of great relevance in nature, from chiral molecules such as sugar to parity transformations in particle physics. In condensed matter physics, recent studies have demonstrated chiral fermions and their relevance in emergent phenomena closely related to topology. The experimental verification of chiral phonons (bosons) remains challenging, however, despite their expected strong impact on fundamental physical properties.
View Article and Find Full Text PDFThe patterning of x-ray grating surfaces by electron-beam lithography offers large flexibility to realize complex optical functionalities. Here, we report on a proof-of-principle experiment to demonstrate the correction of slope errors of the substrates by modulating the local density of the grating lines. A surface error map of a test substrate was determined by optical metrology and served as the basis for an aligned exposure of a corrected grating pattern made by electron-beam lithography.
View Article and Find Full Text PDFBackground: Magnetoelectric multipoles, which break both space-inversion and time-reversal symmetries, play an important role in the magnetoelectric response of a material. Motivated by uncovering the underlying fundamental physics of the magnetoelectric multipoles and the possible technological applications of magnetoelectric materials, understanding as well as detecting such magnetoelectric multipoles has become an active area of research in condensed matter physics. Here we employ the well-established Compton scattering effect as a possible probe for the magnetoelectric toroidal moments in LiNiPO .
View Article and Find Full Text PDFUltrafast manipulation of magnetism bears great potential for future information technologies. While demagnetization in ferromagnets is governed by the dissipation of angular momentum, materials with multiple spin sublattices, for example antiferromagnets, can allow direct angular momentum transfer between opposing spins, promising faster functionality. In lanthanides, 4f magnetic exchange is mediated indirectly through the conduction electrons (the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction), and the effect of such conditions on direct spin transfer processes is largely unexplored.
View Article and Find Full Text PDFThe interaction of many-body systems with intense light pulses may lead to novel emergent phenomena far from equilibrium. Recent discoveries, such as the optical enhancement of the critical temperature in certain superconductors and the photo-stabilization of hidden phases, have turned this field into an important research frontier. Here, we demonstrate nonthermal charge-density-wave (CDW) order at electronic temperatures far greater than the thermodynamic transition temperature.
View Article and Find Full Text PDFX-ray absorption spectroscopy of thin films is central to a broad range of scientific fields, and is typically detected using indirect techniques. X-ray excited optical luminescence (XEOL) from the sample's substrate is one such detection method, in which the luminescence signal acts as an effective transmission measurement through the film. This detection method has several advantages that make it versatile compared with others, in particular for insulating samples or when a probing depth larger than 10 nm is required.
View Article and Find Full Text PDFHybrid semiconductor-ferromagnetic insulator heterostructures are interesting due to their tunable electronic transport, self-sustained stray field, and local proximitized magnetic exchange. In this work, we present lattice-matched hybrid epitaxy of semiconductor-ferromagnetic insulator InAs/EuS heterostructures and analyze the atomic-scale structure and their electronic and magnetic characteristics. The Fermi level at the InAs/EuS interface is found to be close to the InAs conduction band and in the band gap of EuS, thus preserving the semiconducting properties.
View Article and Find Full Text PDFMaterial properties can be controlled via strain, pressure, chemical composition, or dimensionality. Nickelates are particularly susceptible due to their strong variations of the electronic and magnetic properties on such external stimuli. Here, we analyze the photoinduced dynamics in a single crystalline NdNiO film upon excitation across the electronic gap.
View Article and Find Full Text PDFThe Einstein-de Haas effect was originally observed in a landmark experiment demonstrating that the angular momentum associated with aligned electron spins in a ferromagnet can be converted to mechanical angular momentum by reversing the direction of magnetization using an external magnetic field. A related problem concerns the timescale of this angular momentum transfer. Experiments have established that intense photoexcitation in several metallic ferromagnets leads to a drop in magnetization on a timescale shorter than 100 femtoseconds-a phenomenon called ultrafast demagnetization.
View Article and Find Full Text PDFThe ultrafast dynamics of the octahedral rotation in Ca:SrTiO_{3} is studied by time-resolved x-ray diffraction after photoexcitation over the band gap. By monitoring the diffraction intensity of a superlattice reflection that is directly related to the structural order parameter of the soft-mode driven antiferrodistortive phase in Ca:SrTiO_{3}, we observe an ultrafast relaxation on a 0.2 ps timescale of the rotation of the oxygen octahedron, which is found to be independent of the initial temperature despite large changes in the corresponding soft-mode frequency.
View Article and Find Full Text PDFActa Crystallogr A Found Adv
March 2018
Time-delayed, narrow-band echoes generated by forward Bragg diffraction of an X-ray pulse by a perfect thin crystal are exploited for self-seeding at hard X-ray free-electron lasers. Theoretical predictions indicate that the retardation is strictly correlated to a transverse displacement of the echo pulses. This article reports the first experimental observation of the displaced echoes.
View Article and Find Full Text PDFWe present the main specifications of the newly constructed Swiss Free Electron Laser, SwissFEL, and explore its potential impact on ultrafast science. In light of recent achievements at current X-ray free electron lasers, we discuss the potential territory for new scientific breakthroughs offered by SwissFEL in Chemistry, Biology, and Materials Science, as well as nonlinear X-ray science.
View Article and Find Full Text PDFRecent years have seen dramatic developments in the technology of intense pulsed light sources in the THz frequency range. Since many dipole-active excitations in solids and molecules also lie in this range, there is now a tremendous potential to use these light sources to study linear and nonlinear dynamics in such systems. While several experimental investigations of THz-driven dynamics in solid-state systems have demonstrated a variety of interesting linear and nonlinear phenomena, comparatively few efforts have been made to drive analogous dynamics in molecular systems.
View Article and Find Full Text PDFWe present a non-comprehensive review of some representative experimental studies in crystalline condensed matter systems where the effects of intense ultrashort light pulses are probed using x-ray diffraction and photoelectron spectroscopy. On an ultrafast (sub-picosecond) time scale, conventional concepts derived from the assumption of thermodynamic equilibrium must often be modified in order to adequately describe the time-dependent changes in material properties. There are several commonly adopted approaches to this modification, appropriate in different experimental circumstances.
View Article and Find Full Text PDFWe employ time-resolved resonant x-ray diffraction to study the melting of charge order and the associated insulator-to-metal transition in the doped manganite Pr_{0.5}Ca_{0.5}MnO_{3} after resonant excitation of a high-frequency infrared-active lattice mode.
View Article and Find Full Text PDFWe use ultrafast X-ray pulses to characterize the lattice response of SrTiO when driven by strong terahertz fields. We observe transient changes in the diffraction intensity with a delayed onset with respect to the driving field. Fourier analysis reveals two frequency components corresponding to the two lowest energy zone-center optical modes in SrTiO.
View Article and Find Full Text PDFUsing femtosecond time-resolved resonant magnetic x-ray diffraction at the Ho L_{3} absorption edge, we investigate the demagnetization dynamics in antiferromagnetically ordered metallic Ho after femtosecond optical excitation. Tuning the x-ray energy to the electric dipole (E1, 2p→5d) or quadrupole (E2, 2p→4f) transition allows us to selectively and independently study the spin dynamics of the itinerant 5d and localized 4f electronic subsystems via the suppression of the magnetic (2 1 3-τ) satellite peak. We find demagnetization time scales very similar to ferromagnetic 4f systems, suggesting that the loss of magnetic order occurs via a similar spin-flip process in both cases.
View Article and Find Full Text PDFUsing femtosecond time-resolved hard x-ray diffraction, we investigate the structural dynamics of the orthorhombic distortion in the Fe-pnictide parent compound BaFe2As2. The orthorhombic distortion analyzed by the transient splitting of the (1 0 3) Bragg reflection is suppressed on an initial timescale of 35 ps, which is much slower than the suppression of magnetic and nematic order. This observation demonstrates a transient state with persistent structural distortion and suppressed magnetic/nematic order which are strongly linked in thermal equilibrium.
View Article and Find Full Text PDF