Metal-organic frameworks (MOFs) are hybrid materials known for their nanoscale pores, which give them high surface areas but generally lead to poor electrical conductivity. Recently, MOFs with high electrical conductivity were established as promising materials for a variety of applications in energy storage and catalysis. Many recent reports investigating the fundamentals of charge transport in these materials focus on the role of the organic ligands.
View Article and Find Full Text PDFWe report a systematic study on the variation of the physical properties of Ni(HITP) (HITP = 2,3,6,7,10,11-hexaiminotriphenylene) in the context of their influence on the capacitive behavior of this material in supercapacitor electrodes prepared using the neat MOF. We find that, for this representative material, the sample morphology has a greater impact on the measured electrode performance than differences in bulk electrical conductivity.
View Article and Find Full Text PDFChemical vapor deposition of metal-organic frameworks (MOF-CVD) will facilitate the integration of porous and crystalline coatings in electronic devices. In the two-step MOF-CVD process, a precursor layer is first deposited and subsequently converted to a MOF through exposure to linker vapor. We herein report the impact of different metal oxide and metalcone layers as precursors for zeolitic imidazolate framework ZIF-8 films.
View Article and Find Full Text PDFThin films of crystalline and porous metal-organic frameworks (MOFs) have great potential in membranes, sensors, and microelectronic chips. While the morphology and crystallinity of MOF films can be evaluated using widely available techniques, characterizing their pore size, pore volume, and specific surface area is challenging due to the low amount of material and substrate effects. Positron annihilation lifetime spectroscopy (PALS) is introduced as a powerful method to obtain pore size information and depth profiling in MOF films.
View Article and Find Full Text PDFMetal-organic frameworks (MOFs) offer disruptive potential in micro- and optoelectronics because of the unique properties of these microporous materials. Nanoscale patterning is a fundamental step in the implementation of MOFs in miniaturized solid-state devices. Conventional MOF patterning methods suffer from low resolution and poorly defined pattern edges.
View Article and Find Full Text PDFEnergy-efficient indoors temperature and humidity control can be realised by using the reversible adsorption and desorption of water in porous materials. Stable microporous aluminium-based metal-organic frameworks (MOFs) present promising water sorption properties for this goal. The development of synthesis routes that make use of available and affordable building blocks and avoid the use of organic solvents is crucial to advance this field.
View Article and Find Full Text PDFCrystalline, electrically conductive, and intrinsically porous materials are rare. Layered two-dimensional (2D) metal-organic frameworks (MOFs) break this trend. They are porous crystals that exhibit high electrical conductivity and are novel platforms for studying fundamentals of electricity and magnetism in two dimensions.
View Article and Find Full Text PDFA growing demand for indoor atmosphere monitoring relies critically on the ability to reliably and quantitatively detect carbon dioxide. Widespread adoption of CO sensors requires vastly improved materials and approaches because selective sensing of CO under ambient conditions, where relative humidity (RH) and other atmosphere contaminants provide a complex scenario, is particularly challenging. This report describes an ambient CO chemiresistor platform based on nanoporous, electrically conducting two-dimensional metal-organic frameworks (2D MOFs).
View Article and Find Full Text PDFThe performance of modern chips is strongly related to the multi-layer interconnect structure that interfaces the semiconductor layer with the outside world. The resulting demand to continuously reduce the k-value of the dielectric in these interconnects creates multiple integration challenges and encourages the search for novel materials. Here we report a strategy for the integration of metal-organic frameworks (MOFs) as gap-filling low-k dielectrics in advanced on-chip interconnects.
View Article and Find Full Text PDFCopper dicarboxylate metal-organic framework films are deposited via chemical vapour deposition. Uniform films of CuBDC and CuCDC with an out-of-plane orientation and accessible porosity are obtained from the reaction of Cu and CuO with vaporised dicarboxylic acid linkers.
View Article and Find Full Text PDFAnodized aluminum oxides (AAOs) are synthesized and used as catalyst support in combination with Ru as metal in hydrogenation catalysis. SEM and TEM analysis of the as-synthesized AAOs reveal uniform, ordered nanotubes with pore diameters of 18 nm, which are further characterized with Kr physisorption, XRD and FTIR spectroscopy. After impregnation of the AAOs with Ru, the presence of Ru nanoparticles inside the tubular pores is evidenced clearly for the first time via HAADF-STEM-EDX.
View Article and Find Full Text PDFA lively discussion on new directions in porous crystalline materials took place in June 2017, with the beautiful city of Edinburgh as a backdrop, in the context of the unique Faraday Discussions format. Here, 5 minute presentations were given on papers which had been submitted in advance of the conference, with copious time allocated for in-depth discussion of the work presented. Prof.
View Article and Find Full Text PDFCorrection for 'An updated roadmap for the integration of metal-organic frameworks with electronic devices and chemical sensors' by Ivo Stassen et al., Chem. Soc.
View Article and Find Full Text PDFThe ability of metal-organic frameworks (MOFs) to gelate under specific synthetic conditions opens up new opportunities in the preparation and shaping of hierarchically porous MOF monoliths, which could be directly implemented for catalytic and adsorptive applications. In this work, we present the first examples of xero- or aerogel monoliths consisting solely of nanoparticles of several prototypical Zr-based MOFs: UiO-66-X (X = H, NH, NO, (OH)), UiO-67, MOF-801, MOF-808 and NU-1000. High reactant and water concentrations during synthesis were observed to induce the formation of gels, which were converted to monolithic materials by drying in air or supercritical CO.
View Article and Find Full Text PDFBright luminescent silver-adenine species were successfully stabilized in the pores of the MOF-69A (zinc biphenyldicarboxylate) metal-organic framework, starting from the intrinsically blue luminescent bio-MOF-1 (zinc adeninate 4,4'-biphenyldicarboxylate). Bio-MOF-1 is transformed to the MOF-69A framework by selectively leaching structural adenine linkers from the original framework using silver nitrate solutions in aqueous ethanol. Simultaneously, bright blue-green luminescent silver-adenine clusters are formed inside the pores of the recrystallized MOF-69A matrix in high local concentrations.
View Article and Find Full Text PDFEncoded fluorescent particles are fabricated through the selective uptake of dyes in photopatterned metal-organic framework single crystals. The concept is based on spatially controlled photochemical cleavage of pore-blocking pendant groups. Because of the crystalline and porous nature of the host, this approach enables guest uptake that is tunable and can be triggered though controlled irradiation.
View Article and Find Full Text PDFMetal-organic frameworks (MOFs) are typically highlighted for their potential application in gas storage, separations and catalysis. In contrast, the unique prospects these porous and crystalline materials offer for application in electronic devices, although actively developed, are often underexposed. This review highlights the research aimed at the implementation of MOFs as an integral part of solid-state microelectronics.
View Article and Find Full Text PDFWe present a highly sensitive gas detection approach for the infamous 'nerve agent' group of alkyl phosphonate compounds. Signal transduction is achieved by monitoring the work function shift of metal-organic framework UiO-66-NH coated electrodes upon exposure to ppb-level concentrations of a target simulant. Using the Kelvin probe technique, we demonstrate the potential of electrically insulating MOFs for integration in field effect devices such as ChemFETs: a three orders of magnitude improvement over previous work function-based detection of nerve agent simulants.
View Article and Find Full Text PDFMaterials processing, and thin-film deposition in particular, is decisive in the implementation of functional materials in industry and real-world applications. Vapor processing of materials plays a central role in manufacturing, especially in electronics. Metal-organic frameworks (MOFs) are a class of nanoporous crystalline materials on the brink of breakthrough in many application areas.
View Article and Find Full Text PDFIntegrating metal-organic frameworks (MOFs) in microelectronics has disruptive potential because of the unique properties of these microporous crystalline materials. Suitable film deposition methods are crucial to leverage MOFs in this field. Conventional solvent-based procedures, typically adapted from powder preparation routes, are incompatible with nanofabrication because of corrosion and contamination risks.
View Article and Find Full Text PDFSupported metal nanoparticle catalysts are commonly obtained through deposition of metal precursors onto the support using incipient wetness impregnation. Typically, empirical relations between metal nanoparticle structure and catalytic performance are inferred from ensemble averaged data in combination with high-resolution electron microscopy. This approach clearly underestimates the importance of heterogeneities present in a supported metal catalyst batch.
View Article and Find Full Text PDFOxidative decarboxylation of amino acids into nitriles was performed using molecular oxygen as terminal oxidant and a heterogeneous ruthenium hydroxide-based catalyst. A range of amino acids was oxidized in very good yield, using water as the solvent.
View Article and Find Full Text PDFThe oxidative decarboxylation of amino acids to nitriles was achieved in aqueous solution by in situ halide oxidation using catalytic amounts of tungstate exchanged on a [Ni,Al] layered double hydroxide (LDH), NH4 Br, and H2 O2 as the terminal oxidant. Both halide oxidation and oxidative decarboxylation were facilitated by proximity effects between the reactants and the LDH catalyst. A wide range of amino acids was converted with high yields, often >90 %.
View Article and Find Full Text PDF