Sphingolipid activator protein B (saposin B; SapB) is an essential activator of globotriaosylceramide (Gb3) catabolism by α-galactosidase A. However, the manner by which SapB stimulates α-galactosidase A activity remains unknown. To uncover the molecular mechanism of SapB presenting Gb3 to α-galactosidase A, we subjected the fluorescent substrate globotriaosylceramide-nitrobenzoxidazole (Gb3-NBD) to a series of biochemical and structural assays involving SapB.
View Article and Find Full Text PDFBackground: In the time since we presented the first molecular evolutionary study of the ErbB family of receptors and the EGF family of ligands, there has been a dramatic increase in genomic sequences available. We have utilized this greatly expanded data set in this study of the ErbB family of receptors and their ligands.
Results: In our previous analysis we postulated that EGF family ligands could be characterized by the presence of a splice site in the coding region between the fourth and fifth cysteines of the EGF module and the placement of that module near the transmembrane domain.
We have investigated functional effects of glycosylation at N(579) of the epidermal growth factor receptor (EGFR). Our previous study showed that the population of cell-surface expressed EGFRs in A431 cells, a human epidermoid carcinoma cell line, is composed of two subpopulations that differ by glycosylation at N(579) [Zhen et al. (2003) Biochemistry 42, 5478-5492].
View Article and Find Full Text PDFWe have prepared and characterized a new fluorescent derivative of murine epidermal growth factor (EGF), Alexa Fluor 594-labeled EGF (A-EGF), for fluorescence studies of EGF-EGF receptor interactions. We describe the synthesis of this derivative and its physical and biological characterization. The significant overlap between the excitation and the emission spectra of A-EGF makes this probe well suited to fluorescence resonance energy homo-transfer.
View Article and Find Full Text PDFThe epidermal growth factor receptor is a transmembrane glycoprotein that mediates the cellular responses to epidermal growth factor (EGF) and transforming growth factor-alpha (TGF-alpha). In this study of the human EGF receptor naturally expressed in A431 cells, the glycosylation sites of the full-length, membrane-bound receptor and of a secreted form of the receptor were characterized by mass spectrometry. Our data show that the naturally expressed human EGF receptor is fully glycosylated on eight of the 11 canonical sites; two of the sites are not glycosylated, and one is partially glycosylated, a pattern of site-usage similar but not identical to those reported for the recombinant human EGF receptor heterologously expressed in Chinese hamster ovary cells.
View Article and Find Full Text PDFTo investigate the intrinsic activities of the epidermal growth factor receptor and the role of its kinase domain in these functions within a cellular environment lacking endogenous ErbB protein expression, wild-type EGF receptor (WT-EGFR) and two kinase-impaired mutants, D813A and K721R, were expressed in 32D murine hematopoietic cells, a line which is normally dependent on interleukin 3 (IL3) for growth and survival. Addition of EGF in the absence of IL3 stimulates receptor autophosphorylation and, in the presence of serum, mitosis in cells expressing WT-EGFR, but not in cells expressing D813A or K721R. Unexpectedly, cells expressing WT-EGFR or K721R exhibited IL3-independent survival in the presence of fetal bovine serum; parental 32D cells and cells expressing D813A did not survive, apparently undergoing apoptosis in the absence of IL3, whether or not serum was present.
View Article and Find Full Text PDFWe have developed a system for extending stopped-flow analysis to the kinetics of ligand capture and release by cell surface receptors in living cells. While most mammalian cell lines cannot survive the shear forces associated with turbulent, stopped-flow mixing, we determined that 32D cells, murine hematopoietic precursor cells, can survive rapid mixing, even at the high flow rates necessary to achieve dwell times as short as 10 msec. In addition, 32D cells do not express any member of the ErbB family of receptors, providing a null background for studying this receptor family.
View Article and Find Full Text PDFWe have examined the rotational mobility of SL-EGF, a bifunctional adduct of bis(sulfo-N-succinimidyl)-[(15)N,(2)H(16)]-doxyl-2-spiro-4'-pimelate and [Lys3,Tyr22]-murine epidermal growth factor, bound to the EGF receptor in A431 membrane vesicles. The linear EPR spectrum indicated that there was essentially no free SL-EGF in the bound complex preparation. To better define the rotational mobility of the SL-EGF bound to the EGF receptor, ST-EPR spectra were obtained at multiple Zeeman field modulation frequencies.
View Article and Find Full Text PDFWe have extended the use of stopped-flow mixing and fluorescence anisotropy detection to investigate in real-time the effects of ErbB2 coexpression on the kinetic interactions of epidermal growth factor (EGF) with the EGF receptor. Using stable 32D-derived cell lines expressing both the EGF receptor and ErbB2, and fluorescein-labeled H22Y murine EGF (F-EGF), a series of association and dissociation experiments were performed in which the kinetic interaction of F-EGF with cells was monitored by observing time-dependent changes in fluorescence anisotropy following rapid mixing. Data were collected at various concentrations of F-EGF and multiple cell densities, using cells that express similar levels of the EGF receptor but different levels of ErbB2, and then analyzed by fitting to a two independent receptor-class model using global analysis techniques.
View Article and Find Full Text PDFWe describe a system for extending stopped-flow analysis to the kinetics of ligand capture and release by cell surface receptors in living cells. While most mammalian cell lines cannot survive the shear forces associated with turbulent stopped-flow mixing, we determined that a murine hematopoietic precursor cell line, 32D, is capable of surviving rapid mixing using flow rates as great as 4.0 mL/s, allowing rapid processes to be quantitated with dead times as short as 10 ms.
View Article and Find Full Text PDFTwo residues have been shown to be critical for the kinase activity of the receptor for epidermal growth factor (EGF): lysine-721, which functions in the binding of ATP by correctly positioning the gamma-phosphate for phosphoryl transfer, and aspartate-813, which functions as the catalytic base of the kinase. Mutation of either of these two residues has been shown to disrupt kinase activity of the receptor. However, studies performed in different laboratories had suggested that while EGF receptors mutated at lysine-721 are unable to stimulate significant increases of [(3)H]thymidine incorporation into DNA in response to EGF treatment, cells expressing EGF receptors mutated at aspartate-813 do stimulate significant incorporation of [(3)H]thymidine into DNA in response to EGF.
View Article and Find Full Text PDFIn ligand binding studies, ligand depletion often limits the accuracy of the results obtained. This problem is approached by employing the simple observation that as the concentration of receptor in the assay is reduced, ligand depletion is also reduced. Measuring apparent K(D)'s of a ligand at multiple concentrations of receptor with extrapolation to infinitely low receptor concentration takes ligand depletion into account and, depending on the binding model employed, yields a K(D) within the defined limits of accuracy.
View Article and Find Full Text PDFWe have compared all available deduced protein sequences of the ErbB family of receptors and their ligands. Analysis of the aligned sequences of the receptors indicates that there are some differences in the receptors that are specific to invertebrates. In addition, comparison of the vertebrate ErbB receptors suggest that a gene duplication event generated two ancestral receptors, the ErbB3/ErbB4 precursor and the ErbB1/ErbB2 precursor.
View Article and Find Full Text PDFEarlier reports have indicated that epidermal growth factor (EGF) receptor autophosphorylation, thought to be a key step in receptor transmembrane signaling, can be inactivated with the relatively sulfhydryl-specific reagent N-ethylmaleimide (NEM); however, no Cys residue has been implicated in the catalytic mechanism of the kinase. In an effort to address the mechanism of inhibition by NEM, we have investigated effects of several sulfhydryl-modifying reagents on EGF receptor autophosphorylation and on the kinase activity of the receptor toward an exogenous peptide substrate. Kinase activity is relatively insensitive to iodoacetic acid (IAAcid) and iodoacetamide (IAAmide), though IAAmide-treated receptor displays a higher Km(app) with respect to ATP, relative to untreated receptor.
View Article and Find Full Text PDFA triple mutant of murine epidermal growth factor (mEGF), N1Q/H22Y/R45K-mEGF, was constructed by site-directed mutagenesis, expressed, purified, and characterized for use in an affinity cross-linking study to identify aminoacyl residues of the EGF receptor adjacent to a residue in the carboxyl-terminal domain of bound EGF thought to be important in distinguishing between EGF and transforming growth factor-alpha in their recognition by the receptor. Cyclization of Gln1 to form pyroglutamate (pE) limited the site of cross-linking in the mutant to Lys45, permitting identification of receptor residues that are proximal to this residue of bound EGF. The resulting N1pE/H22Y/R45K-mEGF was shown to be comparable to wild-type mEGF in receptor binding and stimulation of receptor autophosphorylation.
View Article and Find Full Text PDFWe have found that the epidermal growth factor (EGF) receptor kinase can utilize the fluorescent ATP derivative, methylanthraniloyl ATP, as a substrate. On the basis of this observation, together with our previous studies that showed that 5'-(p-fluorosulfonylbenzoyl)adenosine (5'-FSBAdo) is a highly specific affinity label for the ATP site of the kinase domain of the EGF receptor, we prepared new derivatives of 5'-FSBAdo, 5'-(p-fluorosulfonyl)-2'(or 3')-(methylanthraniloyl)adenosine (FSBMantAdo), as fluorescent affinity labels for adenine nucleotide binding sites, and in particular for the ATP site of the EGF receptor. The two products were purified by HPLC and were characterized by UV-Vis absorbance spectroscopy, mass spectrometry, nuclear magnetic resonance spectroscopy, and fluorescence spectroscopy.
View Article and Find Full Text PDFIt has been shown previously that the EGF-stimulable protein tyrosine kinase in a membrane preparation from A431 cells was inactivated by heat shock (45 degrees C), under conditions where EGF binding was unaffected [Carpenter et al. (1979) J. Biol.
View Article and Find Full Text PDFInt J Pept Protein Res
March 1996
Epidermal growth factor (EGF) stimulates cellular mitogenesis by binding to and activating its membrane-associated receptor. An important component of signal transduction by the activated receptor is the stimulation of an intrinsic tyrosyl residue-specific protein kinase, which selectively phosphorylates tyrosyl residues in the cytoplasmic tail of the receptor and in other cytoplasmic substrates. A recent study utilizing tyrsub, a new high affinity synthetic peptide substrate for the EGF receptor kinase, provided evidence that in peptide substrate binding, the tyrosyl residue plays the central role in recognition, with residues surrounding the tyrosyl residue contributing to stabilization of docking [Guyer et al.
View Article and Find Full Text PDFWe describe a quantitative examination of the interaction of epidermal growth factor (EGF) with the EGF receptor using A431 cell membrane vesicles as a receptor source. Using T-format steady-state fluorescence anisotropy detection coupled with stopped-flow mixing, we measured the association and EGF-induced dissociation kinetics of fluorescein 5-isothiocyanate-labeled mEGF (FITC-EGF) with the EGF receptor over a wide range of FITC-EGF concentrations, membrane dilutions, and time scales (milliseconds to minutes). Fluorescence anisotropy-based equilibrium binding titrations were also performed.
View Article and Find Full Text PDFArch Biochem Biophys
August 1994
The epidermal growth factor (EGF) receptor, like other protein tyrosine kinases, shows a preference for substrates having acidic residues in the vicinity of the tyrosyl residue that undergoes phosphorylation. We have developed a peptide substrate for the EGF receptor, termed tyrsub, which is based upon the highly acidic amino terminal sequence of human erythrocyte Band 3. Tyrsub possesses the lowest apparent Km(Km(app) = 32 microM) for phosphorylation by the EGF receptor of any peptide substrate reported to date.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
July 1994
The residue proposed to serve as the catalytic base for phosphoryl transfer, Asp-813, of the human epidermal growth factor receptor (EGFR) was mutated to Ala, and the mutant receptor (D813A) was expressed in Chinese hamster ovary (CHO) cells. Partially purified D813A exhibited no detectable kinase activity in the absence or presence of EGF. A low level of EGF-stimulable phosphorylation of D813A was detectable in intact cells, apparently due to the activity of an associated Tyr kinase(s).
View Article and Find Full Text PDFIn this report we describe the production of a [Lys3,Tyr22] murine epidermal growth factor (mEGF) mutant for spin-labeling with bis(sulfo-N-succinimidyl)-[15N,2H16]doxyl-2-spiro-4'-pimelate ([15N,2H16]BSSDP) in order to study the rotational dynamics of the EGF/EGF receptor complex by saturation-transfer electron paramagnetic resonance (ST-EPR). Previous results [Faulkner-O'Brien et al. (1991) Biochemistry 30,8976-8985] indicated that the reaction of [15N,2H16]BSSDP with wild-type mEGF did not yield a product useful for ST-EPR studies of the EGF/EGF receptor complex because the major product, in which [15N,2H16]BSSDP was attached only at the amino terminus of mEGF, lacked rigid motional coupling of the spin probe to the protein, and the more tightly coupled bidentate product was unstable.
View Article and Find Full Text PDFWe report here the use of a stepwise affinity cross-linking technique in the specific covalent attachment of epidermal growth factor (EGF) to its receptor. A heterobifunctional cross-linking reagent, sulfo-N-succinimidyl 4-(fluorosulfonyl)benzoate (SSFSB), which contains a rapidly reacting sulfo-N-succinimidyl active ester and a much more slowly reacting aromatic fluorosulfonyl moiety, was synthesized and characterized. Murine EGF (mEGF) was modified by the cross-linker to yield as the major product a derivative of mEGF having the (fluorosulfonyl)benzoyl moiety attached covalently at the amino terminus.
View Article and Find Full Text PDFWe have recently developed a kinetically controlled, step-wise affinity cross-linking technique for specific, high-yield, covalent linkage of murine epidermal growth factor (mEGF) via its N terminus to the EGF receptor. EGF receptor from A431 cells was cross-linked to radiolabeled mEGF (125I-mEGF) by this technique and the 125I-mEGF-receptor complex was purified and denatured. Tryptic digestion of this preparation gave rise to a unique radiolabeled peptide that did not comigrate with trypsin-treated 125I-mEGF in SDS/Tricine gels but that could be immunoprecipitated with antibodies to mEGF.
View Article and Find Full Text PDF