Dendritic cells (DCs) are important innate and adaptive immune effectors, and have a key role in antigen presentation and T-cell activation. Different lineages of DCs can be developed from hematopoietic progenitors following cytokine signaling, and the various lineages of DCs display distinct morphology, phenotype and functions. There has been limited information on differential cytokine-mediated molecular signaling in DCs.
View Article and Find Full Text PDFInjured CNS axons fail to regenerate and often retract away from the injury site. Axons spared from the initial injury may later undergo secondary axonal degeneration. Lack of growth cone formation, regeneration, and loss of additional myelinated axonal projections within the spinal cord greatly limits neurological recovery following injury.
View Article and Find Full Text PDFBackground: The role of IL-7 and pre-TCR signaling during T cell development has been well characterized in murine but not in human system. We and others have reported that human BM hematopoietic progenitor cells (HPCs) display poor proliferation, inefficient double negative (DN) to double positive (DP) transition and no functional maturation in the in vitro OP9-Delta-like 1 (DL1) culture system.
Results: In this study, we investigated the importance of optimal IL-7 and pre-TCR signaling during adult human T cell development.
J Immune Based Ther Vaccines
November 2010
Dendritic cells (DCs) play a key role in innate and adaptive immunity but the access to sufficient amount of DCs for basic and translational research has been limited.We established a novel ex vivo system to develop and expand DCs from hematopoietic stem/progenitor cells (HPCs). Both human and mouse HPCs were expanded first in feeder culture supplemented with c-Kit ligand (KL, stem cell factor, steel factor or CD117 ligand), Flt3 ligand (fms-like tyrosine kinase 3, Flt3L, FL), thrombopoietin (TPO), IL-3, IL-6, and basic fibroblast growth factor (bFGF), and then in a second feeder culture ectopically expressing all above growth factors plus GM-CSF and IL-15.
View Article and Find Full Text PDFPurpose: Plasmacytoid dendritic cells (pDC) are specialized cells to produce type I IFN. Infiltration of pDCs in cancer tissues that have impaired ability to produce IFN-alpha has been suggested to play immunosuppressive roles in tumor immunity. To identify potential mechanisms causing pDC impairment in the cancer microenvironment, expression of immunoglobulin-like transcript 7 ligands (ILT7L), which inhibits pDC production of type I IFNs on the surface of various human cancer and noncancer cells, was examined.
View Article and Find Full Text PDFMicrophthalmia-associated transcription factor (MITF) is a master gene regulating differentiation of melanocytes, and a lineage survival oncogene mediating pro-proliferative function in malignant melanoma. However, high expression of MITF also has an anti-proliferative effect. To clarify the therapeutic implication of MITF as a molecular target for human melanoma, we evaluated the role of MITF in cell proliferation in a panel of human melanoma cell lines which express different levels of MITF.
View Article and Find Full Text PDFHuman tumor antigens were identified using various immunological and genetic methods, and immune responses to the identified antigens were evaluated in cancer patients. Autologous tumor specific unique antigens derived from genetic alterations in cancer cells were isolated from patients with favorable prognosis after immunotherapy, indicating that they are attractive targets for immunotherapy. Immunogenicity of shared antigens was found to differ among patients due to antigen expression in cancer cells and patients' immunoreactivity.
View Article and Find Full Text PDFReactive oxygen species derived from dopamine metabolism can induce oxidative stress and thus may contribute to Parkinson's disease (PD) pathogenesis. The quinone oxidoreductases, nicotinamide adenine dinucleotide (phosphate) (NAD[P]H): quinone oxidoreductase 1 (NQO1) and dihydronicotinamide riboside (NRH): quinone oxidoreductase 2 (NQO2) detoxify quinones and quinonoid compounds. We investigated associations of genetic polymorphisms of NQO1 (C609T) and NQO2 (I/D, 29 base pairs) with PD in a population-based case-control study of 190 idiopathic PD cases and 305 unrelated controls matched on age and sex.
View Article and Find Full Text PDF