Publications by authors named "Starkus J"

has long been known to affect numerous biological activities. Although plant extracts, purified cannabinoids, or synthetic cannabinoid analogs have shown therapeutic potential in pain, inflammation, seizure disorders, appetite stimulation, muscle spasticity, and treatment of nausea/vomiting, the underlying mechanisms of action remain ill-defined. In this study we provide the first comprehensive overview of the effects of whole-plant extracts and various pure cannabinoids on store-operated calcium (Ca) entry (SOCE) in several different immune cell lines.

View Article and Find Full Text PDF

Calcium entry is central to the functional processes in mast cells and basophils that contribute to the induction and maintenance of inflammatory responses. Mast cells and basophils express an array of calcium channels, which mediate responses to diverse stimuli triggered by small bioactive molecules, physicochemical stimuli and immunological inputs including antigens and direct immune cell interactions. These cells are also highly responsive to certain venoms (such as envenomations), which cause histamine secretion, cytokine release and an array of pro-inflammatory functional responses.

View Article and Find Full Text PDF

Cannabinoid compounds are potential analgesics. Users of medicinal report efficacy for pain control, clinical studies show that cannabis can be effective and opioid sparing in chronic pain, and some constituent cannabinoids have been shown to target nociceptive ion channels. Here, we explore and compare a suite of cannabinoids for their impact upon the physiology of TRPV1.

View Article and Find Full Text PDF

Transient receptor potential melastatin type 2 (TRPM2) is a cation channel activated by free intracellular ADP-ribose and reactive oxygen species. TRPM2 signaling has been linked to the pathophysiology of CNS disorders such as neuropathic pain, bipolar disorder and Alzheimer's disease. In this manuscript, we describe the discovery of JNJ-28583113, a potent brain penetrant TRPM2 antagonist.

View Article and Find Full Text PDF

Large membrane derangements in the form of non-detaching blebs or membrane protrusions occur in a variety of cell stress and physiological situations and do not always reflect apoptotic processes. They have been studied in model mast cells under conditions of cell stress, but their potential physiological relevance to mast cell function and formation in primary mast cells or basophils have not been addressed. In the current study, we examine the large, non-detaching, non-apoptotic, membrane structures that form in model and primary mast cells under conditions of stimulation that are relevant to allergy, atopy and Type IV delayed hypersensitivity reactions.

View Article and Find Full Text PDF

TRPM2 is a Ca-permeable, nonselective cation channel that plays a role in oxidant-induced cell death, insulin secretion, and cytokine release. Few TRPM2 inhibitors have been reported, which hampers the validation of TRPM2 as a drug target. While screening our in-house marine-derived chemical library, we identified scalaradial and 12-deacetylscalaradial as the active components within an extract of an undescribed species of Cacospongia (class Demospongiae, family Thorectidae) that strongly inhibited TRPM2-mediated Ca influx in TRPM2-overexpressing HEK293 cells.

View Article and Find Full Text PDF

Background And Purpose: Kv 1.3 potassium channels are promising pharmaceutical targets for treating immune diseases as they modulate Ca(2+) signalling in T cells by regulating the membrane potential and with it the driving force for Ca(2+) influx. The antimycobacterial drug clofazimine has been demonstrated to attenuate antigen-induced Ca(2+) oscillations, suppress cytokine release and prevent skin graft rejection by inhibiting Kv 1.

View Article and Find Full Text PDF

TRPM2 is a calcium-permeable non-selective cation channel expressed in the plasma membrane and in lysosomes that is critically involved in aggravating reactive oxygen species (ROS)-induced inflammatory processes and has been implicated in cell death. TRPM2 is gated by ADP-ribose (ADPR) and modulated by physiological processes that produce peroxide, cyclic ADP-ribose (cADPR), nicotinamide adenine dinucleotide phosphate (NAADP) and Ca(2+). We investigated the role of extra- and intracellular acidification on heterologously expressed TRPM2 in HEK293 cells.

View Article and Find Full Text PDF

Human ether à go-go related gene (hERG1) potassium channels underlie the repolarizing I(Kr) current in the heart. Since they are targets of various drugs with cardiac side effects we tested whether the amiodarone derivative 2-methyl-3-(3,5-diiodo-4-carboxymethoxybenzyl)benzofuran (KB130015) blocks hERG1 channels like its parent compound. Using patch-clamp and two-electrode voltage-clamp techniques we found that KB130015 blocks native and recombinant hERG1 channels at high voltages, but it activates them at low voltages.

View Article and Find Full Text PDF

TRPM2 is a calcium-permeable nonselective cation channel that is opened by the binding of ADP-ribose (ADPR) to a C-terminal nudix domain. Channel activity is further regulated by several cytosolic factors, including cyclic ADPR (cADPR), nicotinamide adenine dinucleotide phosphate (NAADP), Ca(2+) and calmodulin (CaM), and adenosine monophosphate (AMP). In addition, intracellular ions typically used in patch-clamp experiments such as Cs(+) or Na(+) can alter ADPR sensitivity and voltage dependence, complicating the evaluation of the roles of the various modulators in a physiological context.

View Article and Find Full Text PDF

The Kv1.3 K(+) channel lacks N-type inactivation, but during prolonged depolarized periods it inactivates via the slow (P/C type) mechanism. It bears a titratable histidine residue in position 399 (equivalent of Shaker 449), a site known to influence the rate of slow inactivation.

View Article and Find Full Text PDF

Potassium channels are regulated by protons in various ways and, in most cases, acidification results in potassium current reduction. To elucidate the mechanisms of proton-channel interactions we investigated N-terminally truncated Shaker potassium channels (Kv1 channels) expressed in Xenopus oocytes, varying pH at the intracellular and the extracellular face of the membrane. Intracellular acidification resulted in rapid and reversible channel block.

View Article and Find Full Text PDF

In this study we examine the effects of ionic conditions on the gating charge movement in the fast inactivation-removed wild-type Shaker channel and its W434F mutant. Our results show that various ionic conditions influence the rate at which gating charge returns during repolarization following a depolarizing pulse. These effects are realized through different mechanisms, which include the regulation of channel closing by occupying the cavity, the modulation of transitions into inactivated states, and effects on transitions between closed states via a direct interaction with the channel's gating charges.

View Article and Find Full Text PDF

Time constants of slow inactivation were investigated in NH(2)-terminal deleted Shaker potassium channels using macro-patch recordings from Xenopus oocytes. Slow inactivation is voltage insensitive in physiological solutions or in simple experimental solutions such as K(+)(o)//K(+)(i) or Na(+)(o)//K(+)(i). However, when [Na(+)](i) is increased while [K(+)](i) is reduced, voltage sensitivity appears in the slow inactivation rates at positive potentials.

View Article and Find Full Text PDF

Shaker channel mutants, in which the first (R362), second (R365), and fourth (R371) basic residues in the S4 segment have been neutralized, are found to pass potassium currents with voltage-insensitive kinetics when expressed in Xenopus oocytes. Single channel recordings clarify that these channels continue to open and close from -160 to +80 mV with a constant opening probability (Po). Although Po is low ( approximately 0.

View Article and Find Full Text PDF

C-type inactivation in Shaker potassium channels inhibits K+ permeation. The associated structural changes appear to involve the outer region of the pore. Recently, we have shown that C-type inactivation involves a change in the selectivity of the Shaker channel, such that C-type inactivated channels show maintained voltage-sensitive activation and deactivation of Na+ and Li+ currents in K+-free solutions, although they show no measurable ionic currents in physiological solutions.

View Article and Find Full Text PDF

C-type inactivation of Shaker potassium channels involves entry into a state (or states) in which the inactivated channels appear nonconducting in physiological solutions. However, when Shaker channels, from which fast N-type inactivation has been removed by NH2-terminal deletions, are expressed in Xenopus oocytes and evaluated in inside-out patches, complete removal of K+ ions from the internal solution exposes conduction of Na+ and Li+ in C-type inactivated conformational states. The present paper uses this observation to investigate the properties of ion conduction through C-type inactivated channel states, and demonstrates that both activation and deactivation can occur in C-type states, although with slower than normal kinetics.

View Article and Find Full Text PDF

The kinetic properties of wild-type rat brain IIa sodium channels in excised macropatches were studied using step depolarizations and ramp depolarizations to imitate the slow settling-time of voltage in two-electrode voltage clamp. Ramp depolarizations longer than 1 ms produce an increasing suppression of peak sodium current (I[Na]). Two rates of inactivation can be seen in macroscopic sodium current records from excised patches following both step and ramp depolarizations.

View Article and Find Full Text PDF

This study tests the hypothesis that ion channels will be affected differently by external (extracellular) versus internal (cytoplasmic) exposure to hyperosmolar media. We looked first for effects on inactivation kinetics in wild-type Shaker B potassium channels. Although external hyperosmolar exposure did not alter the inactivation rate, internal exposure slowed both onset and recovery from fast inactivation.

View Article and Find Full Text PDF

Macroscopic currents of wild-type rat brain IIA (RBIIA) and mutant Na channels were recorded in excised patches from Xenopus oocytes. A charge deletion (K859Q) and an adjacent conservative mutation (L860F) in the second domain S4 membrane-spanning region differentially altered voltage sensitivity and kinetics. Analysis of voltage dependence was confined to Na currents with fast inactivation kinetics, although RBIIA and K859Q (but not L860F) also showed proportional shifts between at least two gating modes, rendering currents with fast or slow inactivation kinetics, respectively.

View Article and Find Full Text PDF

Illumination of crayfish giant axons, during internal perfusion with 0.5 mM methylene blue (MB), produces photodynamic effects that include (i) reduction in total sodium conductance, (ii) shifting of the steady-state inactivation curve to the right along the voltage axis, (iii) reduction in the effective valence of steady-state inactivation and, (iv) potentially complete removal of fast inactivation. Additionally, the two kinetic components of fast inactivation in crayfish axons are differentially affected by MB+light.

View Article and Find Full Text PDF

Changes in holding potential (Vh), affect both gating charge (the Q(Vh) curve) and peak ionic current (the F(Vh) curve) seen at positive test potentials. Careful comparison of the Q(Vh) and F(Vh) distributions indicates that these curves are similar, having two slopes (approximately 2.5e for Vh from -115 to -90 mV and approximately 4e for Vh from -90 to -65 mV) and very negative midpoints (approximately -86 mV).

View Article and Find Full Text PDF

Kinetic effects of osmotic stress on sodium ionic and gating currents have been studied in crayfish giant axons after removal of fast inactivation with chloramine-T. Internal perfusion with media made hyperosmolar by addition of formamide or sucrose, reduces peak sodium current (before and after removal of fast inactivation with chloramine-T), increases the half-time for activation, but has no effect on tail current deactivation rate(s). Kinetics of ON and OFF gating currents are not affected by osmotic stress.

View Article and Find Full Text PDF

Effects of changes in initial conditions on the magnitude and kinetics of gating current and sodium current were studied in voltage-clamped, internally-perfused, crayfish giant axons. We examined the effects of changes in holding potential, inactivating prepulses, and recovery from inactivation in axons with intact fast inactivation. We also studied the effects of brief interpulse intervals in axons pretreated with chloramine-T for removal of fast inactivation.

View Article and Find Full Text PDF

Sodium channel activations, measured as the fraction of channels open to peak conductance for different test potentials (F[V]), shows two statistically different slopes from holding potential more positive than -90 mV. A high valence of 4-6e is indicated a test potentials within 35 mV of the apparent threshold potential (circa -65 mV at -85 mV holding potential). However, for test potentials positive to -30 mV, the F(V) curve shows a 2e valence.

View Article and Find Full Text PDF