Lagrangian studies of virus activity in pelagic environments over extended temporal scales are rare. To address this, viruses and bacteria were examined during the course of a natural phytoplankton bloom in the pelagic South Pacific Ocean east of New Zealand. Daily samples were collected in a mesoscale eddy from year days 263-278 (September 19th-October 4th, 2008).
View Article and Find Full Text PDFAppl Environ Microbiol
October 2011
Considerable research has shown that cyanobacteria and the viruses that infect them (cyanophage) are pervasive and diverse in global lake populations. Few studies have seasonally analyzed freshwater systems, and little is known about the bacterial and viral communities that coexist during the harsh winters of the Laurentian Great Lakes. Here, we employed quantitative PCR to estimate the abundance of cyanomyoviruses in this system, using the portal vertex g20 gene as a proxy for cyanophage abundance and to determine the potential ecological relevance of these viruses.
View Article and Find Full Text PDFBackground: Epifluorescence microscopy is a common method used to enumerate virus-like particles (VLP) from environmental samples and relies on the use of filter membranes with pore sizes < 0.02 μm; the most commonly used protocols employ 25 mm Anodisc™ membranes with a built-in support ring. Other filters with small pore sizes exist, including the 13 mm Anodisc™ membranes without a support ring.
View Article and Find Full Text PDFIt has previously been reported that the alpha-proteobacterium Azospirillum brasilense undergoes methylation-independent chemotaxis; however, a recent study revealed cheB and cheR genes in this organism. We have constructed cheB, cheR, and cheBR mutants of A. brasilense and determined that the CheB and CheR proteins under study significantly influence chemotaxis and aerotaxis but are not essential for these behaviors to occur.
View Article and Find Full Text PDF