Background: It is unknown what properties would be required to make an intervention in low income countries that can eradicate or control human immunodeficiency virus (HIV) without antiretroviral therapy (ART) cost-effective.
Methods: We used a model of HIV and ART to investigate the effect of introducing an ART-free viral suppression intervention in 2022 using Zimbabwe as an example country. We assumed that the intervention (cost: $500) would be accessible for 90% of the population, be given to those receiving effective ART, have sufficient efficacy to allow ART interruption in 95%, with a rate of viral rebound of 5% per year in the first 3 months, and a 50% decline in rate with each successive year.
Why cross-species transmissions of zoonotic viral infections to humans are frequently associated with severe disease when viruses responsible for many zoonotic diseases appear to cause only benign infections in their reservoir hosts is unclear. Sooty mangabeys (SMs), a reservoir host for SIV, do not develop disease following SIV infection, unlike nonnatural HIV-infected human or SIV-infected rhesus macaque (RM) hosts. SIV infections of SMs are characterized by an absence of chronic immune activation, in association with significantly reduced IFN-α production by plasmacytoid dendritic cells (pDCs) following exposure to SIV or other defined TLR7 or TLR9 ligands.
View Article and Find Full Text PDFPurpose Of Review: To consider how nonhuman primate (NHP) model systems can best contribute to HIV vaccine development.
Recent Findings: We review the traditional roles of NHP model systems in vaccine development and compare this with how NHP models have been used in HIV vaccine research and development. Comparisons of the immune responses elicited by cellular immune response-inducing vaccines in macaques and humans illustrate the value of primate studies for the relative ranking of HIV vaccine concepts for their likely immunogenicity in humans.
Despite comparable levels of virus replication, simian immunodeficiency viruses (SIV) infection is non-pathogenic in natural hosts, such as sooty mangabeys (SM), whereas it is pathogenic in non-natural hosts, such as rhesus macaques (RM). Comparative studies of pathogenic and non-pathogenic SIV infection can thus shed light on the role of specific factors in SIV pathogenesis. Here, we determine the impact of target-cell limitation, CD8+ T cells, and Natural Killer (NK) cells on virus replication in the early SIV infection.
View Article and Find Full Text PDFNatural SIV infection of sooty mangabeys (SMs) is nonprogressive despite chronic virus replication. Strikingly, it is characterized by low levels of immune activation, while pathogenic SIV infection of rhesus macaques (RMs) is associated with chronic immune activation. To elucidate the mechanisms underlying this intriguing phenotype, we used high-density oligonucleotide microarrays to longitudinally assess host gene expression in SIV-infected SMs and RMs.
View Article and Find Full Text PDFThis study sought to determine if microdermabrasion can selectively remove stratum corneum to increase skin permeability. Although, microdermabrasion has been used for cosmetic treatment of skin for decades, no study has assessed the detailed effects of microdermabrasion conditions on the degree of skin tissue removal. Therefore, we histologically characterized the skin of rhesus macaques and human volunteers after microdermabrasion at different conditions.
View Article and Find Full Text PDFOur limited understanding of the interaction between primate lentiviruses and the host immune system complicates the design of an effective HIV/AIDS vaccine. To identify immunological correlates of protection from SIV disease progression, we immunized two groups of five rhesus macaques (RMs) with either modified vaccinia Ankara (MVA) or MVADeltaudg vectors that expressed SIVmac239 Gag and Tat. Both vectors raised a SIV-specific CD8(+) T cell response, with a magnitude that was greater in mucosal tissues than in peripheral blood.
View Article and Find Full Text PDFBone marrow (BM) is the key hematopoietic organ in mammals and is involved in the homeostatic proliferation of memory CD8(+) T cells. Here we expanded on our previous observation that BM is a preferential site for T-cell proliferation in simian immunodeficiency virus (SIV)-infected sooty mangabeys (SMs) that do not progress to AIDS despite high viremia. We found high levels of mature T-cell proliferation, involving both naive and memory cells, in healthy SMs and rhesus macaques (RMs).
View Article and Find Full Text PDFPathogenic HIV infections of humans and simian immunodeficiency virus (SIV) infections of rhesus macaques are characterized by generalized immune activation and progressive CD4(+) T cell depletion. In contrast, natural reservoir hosts for SIV, such as sooty mangabeys, do not progress to AIDS and show a lack of aberrant immune activation and preserved CD4(+) T cell populations, despite high levels of SIV replication. Here we show that sooty mangabeys have substantially reduced levels of innate immune system activation in vivo during acute and chronic SIV infection and that sooty mangabey plasmacytoid dendritic cells (pDCs) produce markedly less interferon-alpha in response to SIV and other Toll-like receptor 7 and 9 ligands ex vivo.
View Article and Find Full Text PDFBackground: The live attenuated yellow fever vaccine 17D (YF-17D) is one of the most effective vaccines. Despite its excellent safety record, some cases of viscerotropic adverse events develop, which are sometimes fatal. The mechanisms underlying such events remain a mystery.
View Article and Find Full Text PDFNaturally SIV-infected sooty mangabeys (SMs) remain asymptomatic despite high virus replication. Elucidating the mechanisms underlying AIDS resistance of SIV-infected SMs may provide crucial information to better understand AIDS pathogenesis. In this study, we assessed the determinants of set-point viremia in naturally SIV-infected SMs, i.
View Article and Find Full Text PDFTo explore the human T cell response to acute viral infection, we performed a longitudinal analysis of CD8(+) T cells responding to the live yellow fever virus and smallpox vaccines--two highly successful human vaccines. Our results show that both vaccines generated a brisk primary effector CD8(+) T cell response of substantial magnitude that could be readily quantitated with a simple set of four phenotypic markers. Secondly, the vaccine-induced T cell response was highly specific with minimal bystander effects.
View Article and Find Full Text PDFSooty mangabeys (SMs) naturally infected with simian immunodeficiency virus (SIV) do not develop AIDS despite high levels of virus replication. At present, the mechanisms underlying this disease resistance are poorly understood. Here we tested the hypothesis that SIV-infected SMs avoid immunodeficiency as a result of virus replication occurring in infected cells that live significantly longer than human immunodeficiency virus (HIV)-infected human cells.
View Article and Find Full Text PDFPeripheral blood CD4+ T cell counts are a key measure for assessing disease progression and need for antiretroviral therapy in HIV-infected patients. More recently, studies have demonstrated a dramatic depletion of mucosal CD4+ T cells during acute infection that is maintained during chronic pathogenic HIV as well as SIV infection. A different clinical disease course is observed during the infection of natural hosts of SIV infection, such as sooty mangabeys (Cercocebus atys), which typically do not progress to AIDS.
View Article and Find Full Text PDFHIV-infected humans and SIV-infected rhesus macaques experience a rapid and dramatic loss of mucosal CD4+ T cells that is considered to be a key determinant of AIDS pathogenesis. In this study, we show that nonpathogenic SIV infection of sooty mangabeys (SMs), a natural host species for SIV, is also associated with an early, severe, and persistent depletion of memory CD4+ T cells from the intestinal and respiratory mucosa. Importantly, the kinetics of the loss of mucosal CD4+ T cells in SMs is similar to that of SIVmac239-infected rhesus macaques.
View Article and Find Full Text PDFSIV infection of sooty mangabeys (SMs), a natural host species, does not cause AIDS despite high-level virus replication. In contrast, SIV infection of nonnatural hosts such as rhesus macaques (RMs) induces an AIDS-like disease. The depletion of CD8+ T cells during SIV infection of RMs results in marked increases in plasma viremia, suggesting a key role for CD8+ T cells in controlling levels of SIV replication.
View Article and Find Full Text PDFSimian immunodeficiency virus (SIV) SIV(smm) naturally infects sooty mangabeys (SMs) and is the source virus of pathogenic infections with human immunodeficiency virus type 2 (HIV-2) and SIV(mac) of humans and macaques, respectively. In previous studies we characterized SIV(smm) diversity in naturally SIV-infected SMs and identified nine different phylogenetic subtypes whose genetic distances are similar to those reported for the different HIV-1 group M subtypes. Here we report that, within the colony of SMs housed at the Yerkes National Primate Research Center, at least four SIV(smm) subtypes cocirculate, with the vast majority of animals infected with SIV(smm) subtype 1, 2, or 3, resulting in the emergence of occasional recombinant forms.
View Article and Find Full Text PDFIn contrast to HIV-infected humans, naturally SIV-infected sooty mangabeys (SMs) very rarely progress to AIDS. Although the mechanisms underlying this disease resistance are unknown, a consistent feature of natural SIV infection is the absence of the generalized immune activation associated with HIV infection. To define the correlates of preserved CD4(+) T cell counts in SMs, we conducted a cross-sectional immunological study of 110 naturally SIV-infected SMs.
View Article and Find Full Text PDFSimian immunodeficiency viruses (SIV) have had considerable success at crossing species barriers; both human immunodeficiency virus (HIV)-1 and HIV-2 have been transmitted on multiple occasions from SIV-infected natural host species. However, the precise evolutionary and ecological mechanisms characterizing a successful cross-species transmission event remain to be elucidated. Here, in addition to expanding and clarifying our previous description of the adaptation of a diverse, naturally occurring SIVsm inoculum to a new rhesus macaque host, we present an analytical framework for understanding the selective forces driving viral adaptation to a new host.
View Article and Find Full Text PDFA major limitation of highly active antiretroviral therapy is that it fails to eradicate human immunodeficiency virus (HIV) infection due to its limited effects on viral reservoirs carrying replication-competent HIV, including monocytes/macrophages (M/M). Therefore, therapeutic approaches aimed at targeting HIV-infected M/M may prove useful in the clinical management of HIV-infected patients. In previous studies, we have shown that administration of fludarabine-loaded red blood cells (RBC) in vitro selectively induces cell death in HIV-infected M/M via a pSTAT1-dependent pathway.
View Article and Find Full Text PDFSix morphine-exposed and 3 control male Indian rhesus macaques were intravenously inoculated with mixture of SHIV(KU), SHIV(89.6)P and SIV/17E-Fr. These animals were followed for a period of 56 weeks in order to determine CD4 and CD8 profile, viral loads in plasma and cerebrospinal fluid (CSF), relative distribution of 3 pathogenic viruses in blood and brain, binding as well neutralizing antibody levels and cellular immune responses.
View Article and Find Full Text PDFBackground: The ability of emerging pathogens to infect new species is likely related to the diversity of pathogen variants present in existing reservoirs and their degree of genomic plasticity, which determines their ability to adapt to new environments. Certain simian immunodeficiency viruses (SIVcpz, SIVsm) have demonstrated tremendous success in infecting new species, including humans, resulting in the HIV-1 and HIV-2 epidemics. Although SIV diversification has been studied on a population level, the essential substrates for cross-species transmission, namely SIV sequence diversity and the types and extent of viral diversification present in individual reservoir animals have not been elucidated.
View Article and Find Full Text PDFIn contrast to human immunodeficiency virus (HIV)-infected humans, natural hosts for simian immunodeficiency virus (SIV) very rarely progress to acquired immunodeficiency syndrome (AIDS). While the mechanisms underlying this disease resistance are still poorly understood, a consistent feature of natural SIV infection is the absence of the generalized immune activation associated with HIV infection. To investigate the immunologic mechanisms underlying the absence of AIDS in SIV-infected sooty mangabeys (SMs), a natural host species, we performed a detailed analysis of the SIV-specific cellular immune responses in 110 SIV-infected SMs.
View Article and Find Full Text PDF