With the advent of multi-layered and 3D scaffolds, the understanding of microbiome composition and pathogenic mechanisms within polymicrobial biofilms is continuously evolving. A fundamental component in mediating the microenvironment and bacterial-host communication within the biofilm are bilayered nanoparticles secreted by bacteria, known as bacterial extracellular vesicles (BEVs), which transport key biomolecules including proteins, nucleic acids, and metabolites. Their characteristics and microbiome profiles are yet to be explored in the context of in vitro salivary polymicrobial biofilm.
View Article and Find Full Text PDFThe functionalization of pyrazole-based compounds with dinitromethyl and -hydroxytetrazole groups resulted in enhanced energetic properties. Two key compounds, 5-(dinitromethyl)-3,4-dinitro-1-pyrazole () and 5-(3,4-dinitro-1-pyrazol-5-yl)-1-tetrazol-1-ol (), along with their salts, were synthesized and evaluated for their energetic properties. Notably, the bishydroxylammonium salts (: 8778 m·s; : 33.
View Article and Find Full Text PDFAn organometallic erbium bismuth cluster complex, [K(THF)][Cp*ErBi] (), featuring a heterometallocubane core was isolated. The cube emerges from the rare Bi Zintl ion, bridging two erbium centers for the first time. SQUID magnetometry and calculations uncovered dominant antiferromagnetic coupling enabled through the chair-like hexabismuth anion.
View Article and Find Full Text PDFThe prenyl group is present in numerous biologically active small molecule drugs and natural products. We introduce benzylic C-H alkenylation of substrates Ar-CH with alkenylboronic esters (CH)OB-CH[double bond, length as m-dash]CMe as a pathway to form prenyl functionalized arenes Ar-CHCH[double bond, length as m-dash]CMe. Mechanistic studies of this radical relay catalytic protocol reveal diverse reactivity pathways exhibited by the copper(ii) alkenyl intermediate [Cu]-CH[double bond, length as m-dash]CMe that involve radical capture, bimolecular C-C bond formation, and hydrogen atom transfer (HAT).
View Article and Find Full Text PDFActa Crystallogr E Crystallogr Commun
September 2024
The mol-ecular structure of the tripodal carbamoyl-methyl-phosphine oxide compound diethyl {[(5-[2-(di-eth-oxy-phosphor-yl)acetamido]-3-{2-[2-(di-eth-oxy-phos-phor-yl)acetamido]-eth-yl}pent-yl)carbamo-yl]meth-yl}phospho-nate, CHNOP, features six intra-molecular hydrogen-bonding inter-actions. The phospho-nate groups have key bond lengths ranging from 1.4696 (12) to 1.
View Article and Find Full Text PDFThe incorporation of trinitrophenyl-modified 1,3,4-oxadiazole fragments is commonly observed in high-energy molecules with heat-resistant properties. This study explores the strategy of developing heat-resistant energetic materials by incorporating trinitrophenyl and an azo group into 1,3,4-oxadiazole, which involved the synthesis and characterization of ()-1,2-bis(5-(2,4,6-trinitrophenyl)-1,3,4-oxadiazol-2-yl)diazene (2), -(5-(2,4,6-trinitrophenyl)-1,3,4-oxadiazol-2-yl)nitramide (3), and the energetic salts of 3. Characterization techniques employed included H and C NMR, IR and elemental analysis.
View Article and Find Full Text PDFPurpose: Acquired reading deficits, or alexia, affect a significant proportion of individuals with aphasia. We sought to improve treatment for alexia by targeting specific cognitive information-processing components critical to reading (i.e.
View Article and Find Full Text PDFBackground: This case report demonstrates the effective clinical application of a 3D-printed, patient-specific polycaprolactone (PCL) resorbable scaffold for staged alveolar bone augmentation.
Objective: To evaluate the effectiveness of a 3D-printed PCL scaffold in facilitating alveolar bone regeneration and subsequent dental implant placement.
Materials And Methods: A 46-year-old man with a missing tooth (11) underwent staged alveolar bone augmentation using a patient-specific PCL scaffold.
Two energetic isomers of chemically unstable 3,5-bis(dinitromethyl)-4-nitro-1-pyrazole (), namely, 4-methyl-3,5-dinitro-1-(trinitromethyl)-1-pyrazole () and 5-methyl-3,4-dinitro-1-(trinitromethyl)-1-pyrazole (), each containing five nitro groups and having the same chemical composition, exhibit major differences in their physiochemical properties. These include density, enthalpy of formation, temperature of decomposition, and sensitivity to impact and friction. Notably, both isomer and isomer demonstrate superior thermal stability compared to isomer , making them promising candidates as safer energetic materials.
View Article and Find Full Text PDFThis study presents a novel copper-based redox shuttle that employs the PY5 pentadentate polypyridyl ligand in a dye-sensitized solar cell (DSSC). The [Cu(PY5)] complex exhibits a unique five-coordinate square pyramidal geometry, characterized by a strategically labile axial position, to facilitate efficient dye regeneration while minimizing electron recombination, thereby enhancing DSSC performance. Notably, the inclusion of 4--butylpyridine (TBP) as an additive is shown to significantly modulate the electrochemical and photophysical properties of the copper complexes, attributed to its coordination to the vacant axial site.
View Article and Find Full Text PDFTwo hydrogen-bonded crosslinked organic frameworks (HOFs) were synthesized free radical reactions utilizing butadiene and isoprene as crosslinkers. These HOFs exhibit high crystallinity, enabling detailed structural characterization single-crystal X-ray diffraction analysis. Subsequently, one of the olefin-rich HOFs was converted to a hydroxylated framework through hydroboration-oxidation while maintaining the high crystallinity.
View Article and Find Full Text PDFPorous organic materials showcasing large framework dynamics present new paths for adsorption and separation with enhanced capacity and selectivity beyond the size-sieving limits, which is attributed to their guest-responsive sorption behaviors. Porous hydrogen-bonded crosslinked organic frameworks (HOFs) are attractive for their remarkable ability to undergo guest-triggered expansion and contraction facilitated by their flexible covalent crosslinkages. However, the voids of HOFs remain limited, which restrains the extent of the framework dynamics.
View Article and Find Full Text PDFTo determine how language is implemented in the brain, it is important to know which brain areas are primarily engaged in language processing and which are not. Existing protocols for localizing language are typically univariate, treating each small unit of brain volume as independent. One prominent example that focuses on the overall language network in functional magnetic resonance imaging (fMRI) uses a contrast between neural responses to sentences and sets of pseudowords (pronounceable nonwords).
View Article and Find Full Text PDFPeriodontal regeneration requires the re-attachment of oblique and perpendicular periodontal ligament (PDL) fibres to newly formed cementum and alveolar bone, which has proven elusive with existing approaches. In this study, multiple fibre-guiding biphasic tissue engineered constructs were fabricated by melt electrowriting. The biphasic scaffolds were 95 % porous and consisted of a pore size gradient bone compartment and periodontal compartment made of fibre-guiding channels with micro-architectural features ranging from 100 to 60 µm aimed to direct PDL fibre alignment and attachment.
View Article and Find Full Text PDFA scalable synthesis of azidomethyl bisoxadiazol linked-1,2,3-triazole-(ABT) based potential liquid propellant and energetic plasticizer is obtained from commercially available diaminomaleonitrile in excellent yield. Newly synthesized compounds were fully characterized by various spectroscopic techniques. These materials exhibit good densities (1.
View Article and Find Full Text PDFTwo epoxidation catalysts, one of which consists of two VANOL ligands and an aluminum and the other that consists of two VANOL ligands and a boron, were compared. Both catalysts are highly effective in the catalytic asymmetric epoxidation of a variety of aromatic and aliphatic aldehydes with diazoacetamides, giving high yields and excellent asymmetric inductions. The aluminum catalyst is effective at 0 °C and the boron catalyst at -40 °C.
View Article and Find Full Text PDFThis manuscript describes the development of alkyne addition to the aziridine moiety of aziridinoquinoxalines using dual Ir(III)/Cu(I) catalytic system under green light-emitting diode (LED) photolysis (λ =525 nm). This mild method features high levels of chemo- and regioselectivity and was used to generate 30 highly functionalized substituted dihydroquinoxalines in 36-98 % yield. This transformation was also carried asymmetrically using phthalazinamine-based chiral ligand to provide 9 chiral addition products in 96 : 4 to 86 : 14 e.
View Article and Find Full Text PDFNitroimino (R = N-NO) energetic material is a unique class of high energy density materials (HEDM). Synthesis and characterization of insensitive nitroimino compounds are a major challenge. Here triazole-based nitroimino compounds and their high-nitrogen green energetic salts in excellent yields are described.
View Article and Find Full Text PDFNitro groups have played a central and decisive role in the development of the most powerful known energetic materials. Highly nitrated compounds are potential oxidizing agents, which could replace the environmentally hazardous used materials such as ammonium perchlorate. The scarcity of azole compounds with a large number of nitro groups is likely due to their inherent thermal instability and the limited number of ring sites available for bond formation.
View Article and Find Full Text PDFBoron trifluoride (BF ) is a highly corrosive gas widely used in industry. Confining BF in porous materials ensures safe and convenient handling and prevents its degradation. Hence, it is highly desired to develop porous materials with high adsorption capacity, high stability, and resistance to BF corrosion.
View Article and Find Full Text PDF3D printing offers attractive opportunities for large-volume bone regeneration in the oro-dental and craniofacial regions. This is enabled by the development of CAD-CAM technologies that support the design and manufacturing of anatomically accurate meshes and scaffolds. This review describes the main 3D-printing technologies utilized for the fabrication of these patient-matched devices, and reports on their pre-clinical and clinical performance including the occurrence of complications for vertical bone augmentation and craniofacial applications.
View Article and Find Full Text PDFPerchlorate anions used in industry are harmful pollutants in groundwater. Therefore, selectively binding perchlorate provides solutions for environmental remediation. Here, we synthesized a series of tripodal organic cages with highly preorganized C-H bonds that exhibit selectively binding to perchlorate in organic solvents and water.
View Article and Find Full Text PDFActa Crystallogr E Crystallogr Commun
September 2023
The title compound, CHNO ·Br·CHNO, crystallizes as the bromide salt of a 50:50 mixture of (tri-ethyl-azaniumyl)-carb-oxy-lic acid and the zwitterionic (tri-ethyl-azaniumyl)-carboxyl-ate. The two organic entities are linked by a half-occupied bridging carb-oxy-lic acid hydrogen atom that is hydrogen-bonded to the carboxyl-ate group of the second mol-ecule. The tetra-lkyl-ammonium group adopts a nearly perfect tetra-hedral shape around the nitro-gen atom with bond lengths that agree with known values.
View Article and Find Full Text PDFChem Commun (Camb)
September 2023
Little is known about trinitromethyl nitrotriazole (TNMNT) since the crystal structure, density, energetic performance, and thermal properties have not been determined. A detailed characterization of TNMNT and its hydrazinium and potassium salts and their potential as solid propellants and oxidizers has been established. TNMNT exhibits a high density (1.
View Article and Find Full Text PDF