With approval rates <5% and the probability of success in oncology clinical trials of 3.4%, more physiologically relevant in vitro three-dimensional models are being deployed during lead generation to select better drug candidates for solid tumors. Multicellular tumor spheroids (MCTSs) resemble avascular tumor nodules, micrometastases, or the intervascular regions of large solid tumors with respect to morphology, cell-cell and cell-extracellular matrix contacts, and volume growth kinetics.
View Article and Find Full Text PDFSystematic unbiased high-throughput screening (HTS) of drug combinations (DCs) in well-characterized tumor cell lines is a data-driven strategy to identify novel DCs with potential to be developed into effective therapies. Four DCs from a DC HTS campaign were selected for confirmation; only one appears in clinicaltrials.gov and limited preclinical in vitro data indicates that the drug pairs interact synergistically.
View Article and Find Full Text PDFMulticellular tumor spheroid (MCTS) cultures represent more physiologically relevant in vitro cell tumor models that recapitulate the microenvironments and cell-cell or cell-extracellular matrix interactions which occur in solid tumors. We characterized the morphologies, viability, and growth behaviors of MCTSs produced by 11 different head and neck squamous cell carcinoma (HNSCC) cell lines seeded into and cultured in ultra-low attachment microtiter plates (ULA-plates) over extended periods of time. HNSCC MCTS cultures developed microenvironments, which resulted in differences in proliferation rates, metabolic activity, and mitochondrial functional activity between cells located in the outer layers of the MCTS and cells in the interior.
View Article and Find Full Text PDFAnimal and clinical studies demonstrate that cancer drug combinations (DCs) are more effective than single agents. However, it is difficult to predict which DCs will be more efficacious than individual drugs. Systematic DC high-throughput screening (HTS) of 100 approved drugs in the National Cancer Institute's panel of 60 cancer cell lines (NCI-60) produced data to help select DCs for further consideration.
View Article and Find Full Text PDFThe poor success rate of cancer drug discovery has prompted efforts to develop more physiologically relevant cellular models for early preclinical cancer lead discovery assays. For solid tumors, this would dictate the implementation of three-dimensional (3D) tumor models that more accurately recapitulate human solid tumor architecture and biology. A number of anchorage-dependent and anchorage-independent in vitro 3D cancer models have been developed together with homogeneous assay methods and high content imaging approaches to assess tumor spheroid morphology, growth, and viability.
View Article and Find Full Text PDFThe purpose of this study was to investigate the role of dipeptidyl peptidase IV in regulating the effects of 2 of its substrates, neuropeptide Y(1-36) and peptide YY(1-36), on proliferation of and collagen production by preglomerular vascular smooth muscle and glomerular mesangial cells from spontaneously hypertensive and normotensive rats. In cells from hypertensive rats, neuropeptide Y(1-36) and peptide YY(1-36) stimulated [(3)H]-thymidine incorporation (cell proliferation index), cell number, and [(3)H]-proline incorporation (index of collagen synthesis); and sitagliptin (dipeptidyl peptidase IV inhibitor) significantly enhanced most of these effects. Neuropeptide Y(3-36) and peptide YY(3-36) (products of dipeptidyl peptidase IV) had little effect on [(3)H]-thymidine incorporation, and sitagliptin did not enhance the effects of either peptide.
View Article and Find Full Text PDF