Publications by authors named "Stanton F McHardy"

CIDD-0072424 is a novel small molecule developed with remarkable activity for the inhibition of protein kinase C (PKC)-epsilon to treat alcohol use disorder. We developed a concise synthesis of ()- that is highly enantioselective, scalable, and amenable for 3-point structure-activity relationship (SAR) studies for compound optimization. The highly enantioselective nitro-Mannich reaction was achieved through a dual-reagent catalysis system.

View Article and Find Full Text PDF

The nuclear METTL3-METTL14 transfers a methyl group from SAM to convert the of adenosine (A) in RNA to mA and in ssDNA to 6mA. mA marks are prevalent in eukaryotic mRNAs and lncRNAs and modulate their stability and fate in a context-dependent manner. The cytoplasmic METTL3 can act as a mA reader.

View Article and Find Full Text PDF

Glioblastoma (GBM) is the most prevalent and aggressive type of adult brain tumors with low 5-year overall survival rates. Epidemiologic data suggest that estrogen may decrease brain tumor growth, and estrogen receptor beta (ERβ) has been demonstrated to exert antitumor functions in GBM. The lack of potent, selective, and brain permeable ERβ agonist to promote its antitumor action is limiting the therapeutic promise of ERβ.

View Article and Find Full Text PDF

Human schistosomiasis is a neglected tropical disease caused by Schistosoma mansoni, S. haematobium, and S. japonicum.

View Article and Find Full Text PDF

The antischistosomal drug oxamniquine, OXA, requires activation by a sulfotransferase within the parasitic worm to enable killing. Examination of the pharmacokinetic/pharmacodynamic (PK/PD) relationship for OXA identified an in vitro-in vivo paradox with the maximal clinical plasma concentrations five-to ten-times lower than the efficacious concentration for in vitro schistosomal killing. The parasite resides in the vasculature between the intestine and the liver, and modeling the PK data to determine portal concentrations fits with in vitro studies and explains the required human dose.

View Article and Find Full Text PDF

Oral cancer patients have a poor prognosis, with approximately 66% of patients surviving 5-years after diagnosis. Treatments for oral cancer are limited and have many adverse side effects; thus, further studies are needed to develop drugs that are more efficacious. To achieve this objective, we developed CIDD-99, which produces cytotoxic effects in multiple oral squamous cell carcinoma (OSCC) cell lines.

View Article and Find Full Text PDF

Oxamniquine (OXA) is a prodrug activated by a sulfotransferase () that was only active against . We have reengineered OXA to be effective against and . Three derivatives stand out, CIDD-0066790, CIDD-0072229, and CIDD-0149830 as they kill all three major human schistosome species.

View Article and Find Full Text PDF

Shiga toxin 1 and 2 (STx1 and STx2) undergo retrograde trafficking to reach the cytosol of cells where they target ribosomes. As retrograde trafficking is essential for disease, inhibiting STx1/STx2 trafficking is therapeutically promising. Recently, we discovered that the chemotherapeutic drug tamoxifen potently inhibits the trafficking of STx1/STx2 at the critical early endosome-to-Golgi step.

View Article and Find Full Text PDF

Human schistosomiasis is a debilitating, life-threatening disease affecting more than 229 million people in as many as 78 countries. There is only one drug of choice effective against all three major species of Schistosoma, praziquantel (PZQ). However, as with many monotherapies, evidence for resistance is emerging in the field and can be selected for in the laboratory.

View Article and Find Full Text PDF

Tethered photoswitches are molecules with two photo-dependent isomeric forms, each with different actions on their biological targets. They include reactive chemical groups capable of covalently binding to their target. Our aim was to develop a β-subunit-tethered propofol photoswitch (MAP20), as a tool to better study the mechanism of anesthesia through the GABA α1β3γ2 receptor.

View Article and Find Full Text PDF

Currently there is only one method of treatment for human schistosomiasis, the drug praziquantel. Strong selective pressure has caused a serious concern for a rise in resistance to praziquantel leading to the necessity for additional pharmaceuticals, with a distinctly different mechanism of action, to be used in combination therapy with praziquantel. Previous treatment of Schistosoma mansoni included the use of oxamniquine (OXA), a prodrug that is enzymatically activated in S.

View Article and Find Full Text PDF

Hycanthone (HYC) is a retired drug formerly used to treat schistosomiasis caused by infection from Schistosoma mansoni and S. haematobium. Resistance to HYC was first observed in S.

View Article and Find Full Text PDF

Proteolysis targeting chimeras (PROTACs) are bivalent molecules that bring a cellular protein to a ubiquitin ligase E3 for ubiquitination and subsequent degradation. Although PROTAC has emerged as a promising therapeutic means for cancers as it rewires the ubiquitin pathway to destroy key cancer regulators, the degradation signals/pathways for PROTACs remain underdeveloped. Here we append single amino acids, the simplest degradation signal, to a ligand specific for estrogen-related receptor α (ERRα) and demonstrate their utility in ERRα knockdown via the N-end rule pathway and also their efficiency in the growth inhibition of breast cancer cells.

View Article and Find Full Text PDF

Shiga toxin 1 (STx1) and 2 (STx2), produced by Shiga toxin-producing , cause lethal untreatable disease. The toxins invade cells via retrograde trafficking. Direct early endosome-to-Golgi transport allows the toxins to evade degradative late endosomes.

View Article and Find Full Text PDF

Background: Oral squamous cell carcinoma (OSCC) is a deadly disease with a mere 40% five-year survival rate for patients with advanced disease. Previously, we discovered that capsazepine (CPZ), a transient receptor potential channel, Vanilloid subtype 1 (TRPV1) antagonist, has significant anti-tumor effects against OSCC via a unique mechanism-of-action that is independent of TRPV1. Thus, we developed novel CPZ analogs with more potent anti-proliferative effects (CIDD-24, CIDD-99, and CIDD-111).

View Article and Find Full Text PDF

Aging is accompanied by progressive declines in skeletal muscle mass and strength and impaired regenerative capacity, predisposing older adults to debilitating age-related muscle deteriorations and severe morbidity. Muscle stem cells (muSCs) that proliferate, differentiate to fusion-competent myoblasts, and facilitate muscle regeneration are increasingly dysfunctional upon aging, impairing muscle recovery after injury. While regulators of muSC activity can offer novel therapeutics to improve recovery and reduce morbidity among aged adults, there are no known muSC regenerative small molecule therapeutics.

View Article and Find Full Text PDF

We previously demonstrated that capsazepine (CPZ), a synthetic transient receptor potential Vanilloid subtype 1 (TRPV1) antagonist, has significant anti-cancer effects in vivo. The purpose of this study was to develop more potent analogs based upon CPZ pharmacophore and structure-activity relationships (SAR) across analogs. We generated 30 novel compounds and screened for their anti-proliferative effects in cultured HeLa cervical cancer cells.

View Article and Find Full Text PDF

Schistosomiasis is a major human parasitic disease afflicting more than 250 million people, historically treated with chemotherapies praziquantel or oxamniquine. Since oxamniquine is species-specific, killing but not other schistosome species ( or ) and evidence for drug resistant strains is growing, research efforts have focused on identifying novel approaches. Guided by data from X-ray crystallographic studies and worm killing assays on oxamniquine, our structure-based drug design approach produced a robust structure-activity relationship (SAR) program that identified several new lead compounds with effective worm killing.

View Article and Find Full Text PDF

remains the main etiologic agent of candidiasis, the most common fungal infection and now the third most frequent infection in U.S. hospitals.

View Article and Find Full Text PDF

There is a critical need for new mechanism-of-action drugs that reduce the burden of obesity and associated chronic metabolic comorbidities. A potentially novel target to treat obesity and type 2 diabetes is nicotinamide-N-methyltransferase (NNMT), a cytosolic enzyme with newly identified roles in cellular metabolism and energy homeostasis. To validate NNMT as an anti-obesity drug target, we investigated the permeability, selectivity, mechanistic, and physiological properties of a series of small molecule NNMT inhibitors.

View Article and Find Full Text PDF

Targeted therapies for ER+/PR+ and HER2-amplified breast cancers have improved patient survival, but there are no therapies for triple negative breast cancers (TNBC) that lack expression of estrogen and progesterone receptors (ER/PR), or amplification or overexpression of HER2. Gene expression profiling of TNBC has identified molecular subtypes and representative cell lines. An extract of the Texas native plant Amyris texana was found to have selective activity against MDA-MB-453 cells, a model of the luminal androgen receptor (LAR) subtype of TNBC.

View Article and Find Full Text PDF

Nicotinamide N-methyltransferase (NNMT) is a fundamental cytosolic biotransforming enzyme that catalyzes the N-methylation of endogenous and exogenous xenobiotics. We have identified small molecule inhibitors of NNMT with >1000-fold range of activity and developed comprehensive structure-activity relationships (SARs) for NNMT inhibitors. Screening of N-methylated quinolinium, isoquinolinium, pyrididium, and benzimidazolium/benzothiazolium analogues resulted in the identification of quinoliniums as a promising scaffold with very low micromolar (IC ∼ 1 μM) NNMT inhibition.

View Article and Find Full Text PDF