In vitro metabolism studies were conducted to determine the human cytochrome P450 enzyme(s) involved in the biotransformation of 7-(1,1-dimethylethyl)-6-(2-ethyl-2H-1,2,4-triazol-3-ylmethoxy)-3-(2-fluorophenyl)-1,2,4-triazolo[4,3b]pyridazine (TPA023), a selective agonist of human gamma-aminobutyric acid(A) receptor alpha2 and alpha3 subunits. Incubation of TPA023 with NADPH-fortified human liver microsomes resulted in the formation of t-butyl hydroxy TPA023, N-desethyl TPA023, and three minor metabolites. Both t-butyl hydroxylation and N-deethylation reactions were greatly inhibited (>85%) in the presence of CYP3A-selective inhibitory antibodies and chemical inhibitors, indicating that members of the CYP3A subfamily play an important role in TPA023 metabolism.
View Article and Find Full Text PDF[14C]7-(1,1-Dimethylethyl)-6-(2-ethyl-2H-1,2,4-triazol-3-ylmethoxy)-3-(2-fluorophenyl)-1,2,4-triazolo[4,3-b]pyridazine ([14C]-TPA023; 99 microCi/dose) was administered to five young, healthy, fasted male subjects as a single oral dose (3.0 mg) in solution (propylene glycol/water, 10:90 v/v). The parent compound was rapidly absorbed (plasma Tmax approximately 2 h), exhibited an apparent terminal half-life of 6.
View Article and Find Full Text PDF