Publications by authors named "Stanley Reeves"

Background: Computed tomography (CT) generates a three-dimensional rendering that can be used to interrogate a given region or desired structure from any orientation. However, in preclinical research, its deployment remains limited due to relatively high upfront costs. Existing integrated imaging systems that provide merged planar X-ray also dwarfs CT popularity in small laboratories due to their added versatility.

View Article and Find Full Text PDF

For a tomographic imaging system, image reconstruction quality is dependent on the accurate determination of coordinates for the true center of rotation (COR). A significant COR offset error may introduce ringing, streaking, or other artifacts, while smaller error in determining COR may blur the reconstructed image. Well known COR correction techniques including image registration, center of mass calculation, or reconstruction evaluation work well under certain conditions.

View Article and Find Full Text PDF

R* mapping is a useful tool in blood-oxygen-level dependent fMRI due to its quantitative-nature. However, like T*-weighted imaging, standard R* mapping based on multi-echo EPI suffers from geometric distortion, due to strong off-resonance near the air-tissue interface. Joint mapping of R* and off-resonance can correct the geometric distortion and is less susceptible to motion artifacts.

View Article and Find Full Text PDF

Joint estimation of spin density R2* decay and OFF-resonance frequency maps is very useful in many magnetic resonance imaging applications. The standard multi-echo approach can achieve high accuracy but requires a long acquisition time for sampling multiple k-space frames. There are many approaches to accelerate the acquisition.

View Article and Find Full Text PDF

A color image meant for human consumption can be appropriately displayed only if at least three distinct color channels are present. Typical digital cameras acquire three-color images with only one sensor. A color filter array (CFA) is placed on the sensor such that only one color is sampled at a particular spatial location.

View Article and Find Full Text PDF

Single shot parameter assessment by retrieval from signal encoding (SS-PARSE) is a recently introduced method to obtain quantitative parameter maps from a single-shot (typically 65 ms) magnetic resonance imaging (MRI) signal. Because it explicitly models local magnetization decay and phase evolution occurring during the signal 1) it can provide quantitative estimates of local transverse magnetization magnitude and phase, frequency, and relaxation rate and 2) it is free of geometric distortion or blurring due to field nonuniformities within the tissues. These properties promise to be advantageous in functional brain MRI (fMRI) and other dynamic imaging applications.

View Article and Find Full Text PDF

Tracking of cardiac motion using magnetic resonance tagging has attracted increasing attention in recent years. Several methods for tagging the cardiac tissue and tracking the motion of the tags have been developed. However, the choice of tag pattern that minimizes tracking error has received less attention.

View Article and Find Full Text PDF

The regularization of the least-squares criterion is an effective approach in image restoration to reduce noise amplification. To avoid the smoothing of edges, edge-preserving regularization using a Gaussian Markov random field (GMRF) model is often used to allow realistic edge modeling and provide stable maximum a posteriori (MAP) solutions. However, this approach is computationally demanding because the introduction of a non-Gaussian image prior makes the restoration problem shift-variant.

View Article and Find Full Text PDF

Long acquisition times, low resolution, and voxel contamination are major difficulties in the application of magnetic resonance spectroscopic imaging (MRSI). To overcome these difficulties, an online-optimized acquisition of k-space, termed sequential forward array selection (SFAS), was developed to reduce acquisition time without sacrificing spatial resolution. A 2D proton MRSI region of interest (ROI) was defined from a scout image and used to create a region of support (ROS) image.

View Article and Find Full Text PDF

Fast Fourier transform (FFT)-based restorations are fast, but at the expense of assuming that the blurring and deblurring are based on circular convolution. Unfortunately, when the opposite sides of the image do not match up well in intensity, this assumption can create significant artifacts across the image. If the pixels outside the measured image window are modeled as unknown values in the restored image, boundary artifacts are avoided.

View Article and Find Full Text PDF