Identifying factors required for spermatogenesis is important for understanding mechanisms of male fertility. Inactivation of either the or gene leads to a block in spermatogenesis causing infertility in male mice. MGAT1 GlcNAc-transferase initiates complex N-glycan synthesis and MAN2A2 mannosidase generates the substrate for MGAT2 GlcNAc-transferase to form a biantennary complex N-glycan.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2024
Designing multifunctional materials that mimic the light-dark decoupling of natural photosynthesis is a key challenge in the field of energy conversion. Herein, we introduce MnBr-253, a precious metal-free metal-organic framework (MOF) built on Al nodes, bipyridine linkers and MnBr(CO)(bipyridine) complexes. Upon irradiation, MnBr-253 colloids demonstrate an electron photocharging capacity of ~42 C ⋅ g , with state-of-the-art photocharging rate (1.
View Article and Find Full Text PDFGrazing lands play a significant role in global carbon (C) dynamics, holding substantial soil organic carbon (SOC) stocks. However, historical mismanagement (e.g.
View Article and Find Full Text PDFGlycosylation-deficient Chinese hamster ovary (CHO) cell lines have been instrumental in the discovery of N-glycosylation machinery. Yet, the molecular causes of the glycosylation defects in the Lec5 and Lec9 mutants have been elusive, even though for both cell lines a defect in dolichol formation from polyprenol was previously established. We recently found that dolichol synthesis from polyprenol occurs in three steps consisting of the conversion of polyprenol to polyprenal by DHRSX, the reduction of polyprenal to dolichal by SRD5A3 and the reduction of dolichal to dolichol, again by DHRSX.
View Article and Find Full Text PDFObjectives: To determine the proportion of people in New South Wales towns at high risk of Japanese encephalitis virus (JEV) infections during the 2022 outbreak; to identify risk factors for JEV infection.
Study Design: Cross-sectional serosurvey study of the seroprevalence of JEV-specific antibodies in NSW.
Setting, Participants: Convenience sample of people (all ages) from five regional NSW towns deemed to be at high risk of JEV infections after first outbreak of Japanese encephalitis in southeastern Australia in early 2022 (Balranald, Corowa, Dubbo, Griffith, Temora), 21 June - 22 July 2022.
A mouse plague occurred in Eastern Australia from spring 2020 to winter 2021, impacting an area of around 180,000 km. It harmed human physical and psychological health, damaged the natural and built environment, and endangered farmed, domestic and native animals. However, the mouse plague was overshadowed by the COVID-19 pandemic, especially as the end of the plague coincided with the arrival and surge of the COVID-19 delta strain in rural New South Wales (NSW).
View Article and Find Full Text PDFGlycosylation of proteins and lipids in mammals is essential for embryogenesis and the development of all tissues. Analyses of glycosylation mutants in cultured mammalian cells and model organisms have been key to defining glycosylation pathways and the biological functions of glycans. More recently, applications of genome sequencing have revealed the breadth of rare congenital disorders of glycosylation in humans and the influence of genetics on the synthesis of glycans relevant to infectious diseases, cancer progression and diseases of the immune system.
View Article and Find Full Text PDFAmong options for atmospheric CO removal, sequestering soil organic carbon (SOC) via improved grazing management is a rare opportunity because it is scalable across millions of globally grazed acres, low cost, and has high technical potential. Decades of scientific research on grazing and SOC has failed to form a cohesive understanding of how grazing management affects SOC stocks and their distribution between particulate (POM) and mineral-associated organic matter (MAOM)-characterized by different formation and stabilization pathways-across different climatic contexts. As we increasingly look to grazing management for SOC sequestration on grazinglands to bolster our climate change mitigation efforts, we need a clear and collective understanding of grazing management's impact on pathways of SOC change to inform on-the-ground management decisions.
View Article and Find Full Text PDFSlc35c1 encodes an antiporter that transports GDP-fucose into the Golgi and returns GMP to the cytoplasm. The closely related gene Slc35c2 encodes a putative GDP-fucose transporter and promotes Notch fucosylation and Notch signaling in cultured cells. Here, we show that HEK293T cells lacking SLC35C1 transferred reduced amounts of O-fucose to secreted epidermal growth factor-like repeats from NOTCH1 or secreted thrombospondin type I repeats from thrombospondin 1.
View Article and Find Full Text PDFRecently, several ternary phosphidotrielates and -tetrelates have been investigated with respect to their very good ionic conductivity, while less focus was pointed towards their electronic structures. Here, we report on a novel series of compounds, in which several members possess direct band gaps. We investigated the known compounds LiAlP, LiGaP, LiInP, and NaInP and describe the synthesis and the crystal structure of novel NaInP.
View Article and Find Full Text PDFPurpose: The study was aimed at detecting the mutation patterns in the drug targets in Plasmodium vivax that confer resistance to the common antimalarial agents used in India.
Methods: A total of 27 Plasmodium vivax isolates collected from whole blood samples over a three year period were subjected to PCR amplification followed by sequencing of the genes pvmdr1, pvdhfr, pvdhps and pvk12, which serve as the molecular targets to detect resistance to chloroquine, pyrimethamine, sulfadoxine and artemisinin respectively.
Results: The study found T958 M F1076L double mutants of pvmdr1 in 52 %(14/27) isolates, S58R S117 N double mutants of pvdhfr in 67 % (18/27) isolates, A383G A553G double mutant pvdhps in 59 % (16/27) isolates and wild type of pvk12 gene in all the isolates.
Structural epilepsies display complex immune activation signatures. However, it is unclear which neuroinflammatory pathways drive pathobiology. Transcriptome studies of brain resections from mesial temporal lobe epilepsy (mTLE) patients revealed a dysregulation of transforming growth factor β, interferon α/β, and nuclear factor erythroid 2-related factor 2 pathways.
View Article and Find Full Text PDFNotch signaling determines cell fates in mouse intestine. Notch receptors contain multiple epidermal growth factor-like (EGF) repeats modified by O-glycans that regulate Notch signaling. Conditional deletion of protein O-fucosyltransferase 1 (Pofut1) substantially reduces Notch signaling and markedly perturbs lineage development in mouse intestine.
View Article and Find Full Text PDFFront Immunol
November 2023
Glycosylation of Notch receptors by O-fucose glycans regulates Notch ligand binding and Notch signaling during hematopoiesis. However, roles in hematopoiesis for other O-glycans that modify Notch receptors have not been determined. Here we show that the EGF domain specific GlcNAc transferase EOGT is required in mice for the optimal production of lymphoid and myeloid cells.
View Article and Find Full Text PDFTumor necrosis factor (TNF) is a pleiotropic cytokine belonging to a family of trimeric proteins with both proinflammatory and immunoregulatory functions. TNF is a key mediator in autoimmune diseases and during the last couple of decades several biologic drugs have delivered new therapeutic options for patients suffering from chronic autoimmune diseases such as rheumatoid arthritis and chronic inflammatory bowel disease. Attempts to design small molecule therapies directed to this cytokine have not led to approved products yet.
View Article and Find Full Text PDFIn the effort to generate sustainable clean energy from abundant resources such as water and carbon dioxide, solar fuel production-the combination of solar-light harvesting and the generation of efficient chemical energy carriers-by artificial molecular photosystems is very attractive. Molecular constituents that display attractive features for chemical energy conversion (such as high product selectivity and atom economy) have been developed, and their interfacing with host materials has enabled recyclability, controlled site positioning, as well as access to fundamental insights into the catalytic mechanism and environment-governed selectivity. Among the wide variety of supports, metal-organic frameworks (MOFs) possess valuable characteristics (such as their porosity and versatility) that can influence the reaction environment and material architecture in a unique fashion.
View Article and Find Full Text PDFFront Mol Biosci
November 2022
Notch signaling NOTCH1 stimulated by Delta-like ligand 4 (DLL4) is required for the development of T cells in thymus, and NOTCH2 stimulated by Notch ligand DLL1 is required for the development of marginal zone (MZ) B cells in spleen. Notch signaling also regulates myeloid cell production in bone marrow and is an essential contributor to the generation of early hematopoietic stem cells (HSC). The differentiation program in each of these cellular contexts is optimized by the regulation of Notch signaling strength by O-glycans attached to epidermal growth factor-like (EGF) repeats in the extracellular domain of Notch receptors.
View Article and Find Full Text PDFSyngas, a mixture of CO and H , is a high-priority intermediate for producing several commodity chemicals, e.g., ammonia, methanol, and synthetic hydrocarbon fuels.
View Article and Find Full Text PDFMaterials enabling solar energy conversion and long-term storage for readily available electrical and chemical energy are key for off-grid energy distribution. Herein, the specific confinement of a rhenium coordination complex in a metal-organic framework (MOF) unlocks a unique electron accumulating property under visible-light irradiation. About 15 C g of electric charges can be concentrated and stored for over four weeks without loss.
View Article and Find Full Text PDFCell surfaces display a wide array of molecules that confer identity. While flow cytometry and cluster of differentiation (CD) markers have revolutionized cell characterization and purification, functionally heterogeneous cellular subtypes remain unresolvable by the CD marker system alone. Using hematopoietic lineages as a paradigm, we leverage the extraordinary molecular diversity of heparan sulfate (HS) glycans to establish cellular "glycotypes" by utilizing a panel of anti-HS single-chain variable fragment antibodies (scFvs).
View Article and Find Full Text PDFScientists who plan to publish in British Journal of Pharmacology (BJP) must read this article before undertaking a study. This editorial provides guidance for the design of experiments. We have published previously two guidance documents on experimental design and analysis (Curtis et al.
View Article and Find Full Text PDF