Peptide nucleic acids (PNAs) can target and stimulate recombination reactions in genomic DNA. We have reported that γPNA oligomers possessing the diethylene glycol γ-substituent show improved efficacy over unmodified PNAs in stimulating recombination-induced gene modification. However, this structural modification poses a challenge because of the inherent racemization risk in -alkylation of the precursory serine side chain.
View Article and Find Full Text PDFThe development of therapeutic agents that specifically target cancer cells while sparing healthy tissue could be used to enhance the efficacy of cancer therapy without increasing its toxicity. Specific targeting of cancer cells can be achieved through the use of pH-low insertion peptides (pHLIP), which take advantage of the acidity of the tumor microenvironment to deliver cargoes selectively to tumor cells. We developed a pHLIP-peptide nucleic acid (PNA) conjugate as an antisense reagent to reduce expression of the otherwise undruggable DNA double-strand break repair factor, KU80, and thereby radiosensitize tumor cells.
View Article and Find Full Text PDFMany important biological applications of peptide nucleic acids (PNAs) target nucleic acid binding in eukaryotic cells, which requires PNA translocation across at least one membrane barrier. The delivery challenge is further exacerbated for applications in whole organisms, where clearance mechanisms rapidly deplete and/or deactivate exogenous agents. We have demonstrated that nanoparticles (NPs) composed of biodegradable polymers can encapsulate and release PNAs (alone or with co-reagents) in amounts sufficient to mediate desired effects in vitro and in vivo without deleterious reactions in the recipient cell or organism.
View Article and Find Full Text PDFUnusual nucleic acid structures are salient triggers of endogenous repair and can occur in sequence-specific contexts. Peptide nucleic acids (PNAs) rely on these principles to achieve non-enzymatic gene editing. By forming high-affinity heterotriplex structures within the genome, PNAs have been used to correct multiple human disease-relevant mutations with low off-target effects.
View Article and Find Full Text PDFmicroRNA-21 (miR-21) is the most commonly upregulated miRNA in solid tumors. This cancer-associated microRNA (oncomiR) regulates various downstream effectors associated with tumor pathogenesis during all stages of carcinogenesis. In this study, we analyzed the function of miR-21 in noncancer cells of the tumor microenvironment to further evaluate its contribution to tumor progression.
View Article and Find Full Text PDFSafe and efficient genome editing has been an unmitigated goal for biomedical researchers since its inception. The most prevalent strategy for gene editing is the use of engineered nucleases that induce DNA damage and take advantage of cellular DNA repair machinery. This includes meganucleases, zinc-finger nucleases, transcription activator-like effector nucleases, and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR/Cas9) systems.
View Article and Find Full Text PDFWe have examined the abilities of three complementary γ-peptide nucleic acid (γPNA) oligomers to invade an RNA G-quadruplex and potently inhibit translation of a luciferase reporter transcript containing the quadruplex-forming sequence (QFS) within its 5'-untranslated region. All three γPNA oligomers bind with low nanomolar affinities to an RNA oligonucleotide containing the QFS. However, while all probes inhibit translation with low to midnanomolar IC50 values, the γPNA designed to hybridize to the first two G-tracts of the QFS and adjacent 5'-overhanging nucleotides was 5-6 times more potent than probes directed to either the 3'-end or internal regions of the target at 37 °C.
View Article and Find Full Text PDFOn-demand regulation of gene expression in living cells is a central goal of chemical biology and antisense therapeutic development. While significant advances have allowed regulatory modulation through inserted genetic elements, on-demand control of the expression/translation state of a given native gene by complementary sequence interactions remains a technical challenge. Toward this objective, we demonstrate the reversible suppression of a luciferase gene in cell-free translation using Watson-Crick base pairing between the mRNA and a complementary γ-modified peptide nucleic acid (γPNA) sequence with a noncomplementary toehold.
View Article and Find Full Text PDFThe microwave synthesis of twenty quaternary ammonium salts is described. The syntheses feature comparable yields to conventional synthetic methods reported in the current literature with reduced reaction times and the absence of solvent or minimal solvent.
View Article and Find Full Text PDFHeptamethine cyanine dyes are a class of near infrared (NIR) dyes that have captured the interest of the scientific community. Although applications that utilize NIR fluorescence technology are rapidly expanding, progress is limited by the lack of availability and cost of suitable compounds that can be utilized as labels and/or probes. Herein, we report the use of microwave assisted organic synthesis of five NIR cyanine dyes in yields ranging from 64-83% with a significant reduction in solvent use.
View Article and Find Full Text PDF