Introduction: The current study investigates the utilization and performance of machine learning (ML) algorithms in the cognitive task of finding the correlation between numerical parameters of the human brain activation during gaming. We hypothesize that our integrated feature extraction platform is able to distinguish between different psychosomatic conditions in the gaming process as measured by the functional near-infrared brain imaging technique.
Methods: For demonstration, the decision-making process was constructed in the experiment environment that combined gaming simulator, such as the Iowa Gaming Task (IGT), with functional near-infrared spectroscopy (fNIRS) as the neuroimaging technique.