Glioblastoma patients have a highly immunosuppressive tumor microenvironment and systemic immunosuppression that comprise a major barrier to immune checkpoint therapy. Based on the production of endocannabinoids by glioblastomas, we explored involvement of endocannabinoid receptor 2 (CB2R), encoded by the CNR2 gene, which is predominantly expressed by immune cells, in glioblastoma-related immunosuppression. Bioinformatics of human glioblastoma databases was used to correlate enzymes involved in the synthesis and degradation of endocannabinoids, as well as CB2Rs, with patient overall survival.
View Article and Find Full Text PDFDeposition of amyloid-β (Aβ) in the brain is one of the important histopathological features of Alzheimer's disease (AD). Previously, we reported a correlation between cell adhesion molecule L1 (L1) expression and the occurrence of AD, but its relationship was unclear. Here, we report that the expression of L1 and a 70 kDa cleavage product of L1 (L1-70) was reduced in the hippocampus of AD (APPswe) mice.
View Article and Find Full Text PDFSyndromic autism spectrum disorders (ASDs) are characterized by impaired social communication and repetitive/stereotyped behaviors. Currently available therapeutic agents against ASD have limited efficacy. Thus, searching for novel and effective drugs ameliorating core symptoms, in particular social deficits, is of utmost importance.
View Article and Find Full Text PDFBesides several endogenous elements, exogenous factors, including exposure to pesticides, have been recognized as putative factors contributing to the onset and development of neurodegenerative diseases, including Parkinson's disease (PD). Considering the availability, success rate, and limitations associated with the current arsenals to fight PD, there is an unmet need for novel therapeutic interventions. Therefore, based on the previously reported beneficial functions of the L1 cell adhesion molecule, we hypothesized that L1 mimetic compounds may serve to neutralize neurotoxicity triggered by the pesticide paraquat (PQ).
View Article and Find Full Text PDFBackground: Human endogenous retroviruses (HERVs), suspected to be transposition-defective, may reshape the transcriptional network of the human genome by regulatory elements distributed in their long terminal repeats (LTRs). HERV-K (HML-2), the most preserved group with the least number of accumulated of mutations, has been associated with aberrant gene expression in tumorigenesis and autoimmune diseases. Because of the high sequence similarity between different HERV-Ks, current methods have limitations in providing genome-wide mapping specific for individual HERV-K (HML-2) members, a major barrier in delineating HERV-K (HML-2) function.
View Article and Find Full Text PDFParkinson's disease (PD) is a progressive neurodegenerative disease, involving resting tremor and bradykinesia, for which no recognized therapies or drugs are available to halt or slow progression. In recent years, natural botanic products have been considered relatively safe, with limited side effects, and are expected to become an important source for clinical mediation of PD in the future. Our study focuses on the ability of loganin, a compound derived from fruits of cornus, to mediate neuroprotection in a mouse model of PD.
View Article and Find Full Text PDF1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine (MPTP), which induces the pathological characteristics of Parkinson's disease in rodents, also specifically targets dopaminergic neurons in zebrafish embryos and larvae. Loganin, a traditional Chinese drug, was reported to regulate immune function and possess anti-inflammatory and anti-shock effects. Here, we investigate the role of loganin in MPTP-induced Parkinson-like abnormalities in zebrafish.
View Article and Find Full Text PDFLead (Pb) is a widespread environmental contaminant that can profoundly affect the immune system in vaccinated children. To explore the association between blood Pb and HBsAb levels in children chronically exposed to Pb, we measured hepatitis B surface antibody (HBsAb) titers, to reflect the immune response in the children of Guiyu, an electronic and electrical waste (e-waste) recycling area well known for environmental Pb contamination. We performed secondary exploratory analyses of blood Pb levels and plasma HBsAb titers in samples, taken in two phases between 2011 and 2012, from 590 children from Guiyu (exposed group) and Haojiang (reference group).
View Article and Find Full Text PDFBiochem Biophys Res Commun
September 2014
Establishment of microtubule polarity is critical for directional cell migration involved in morphogenesis, differentiation, cell division, and metastasis. Current models, involving iterative microtubule capture and inactivation of microtubule depolymerizing mechanisms at the leading edge, cannot account for the biased migration exhibited by cells in culture in the absence of directional cues, suggesting central mechanisms governing microtubule polarity remain unknown. We engineered two human MDA-MB-231/IMP1 breast carcinoma cell lines, denoted kdKIF11-1 and kdKIF11-2, in which the kinesin KIF11 (also known as Eg5) was stably knocked down by two different shRNAs.
View Article and Find Full Text PDFHigh mobility group box 1 (HMGB1, also called amphoterin) facilitates neurite outgrowth in early development, yet can exacerbate pathology and inhibit regeneration by inducing adverse neuroinflammation when released from dying cells, suggesting that HMGB1 plays a critical, yet undefined role in neuroregeneration. We explored whether HMGB1 contributes to recovery after complete spinal cord transection in adult zebrafish. Quantitative PCR and in situ hybridization revealed that HMGB1 mRNA levels decreased between 12 h to 11 days after spinal cord injury (SCI), then returned to basal levels by 21 days.
View Article and Find Full Text PDFDNA repair deficiency results in neurodegenerative disease and increased susceptibility to excitotoxic cell death, suggesting a critical but undefined role for DNA damage in neurodegeneration. We compared DNA damage, Ku70-Bax interaction, and Bax-dependent excitotoxic cell death in kainic acid-treated primary cortical neurons derived from both wild-type mice and mice deficient in the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) encoded by the Prkdc gene. In both wild-type and Prkdc(-/-) neurons, kainic acid treatment resulted in rapid induction of DNA damage (53BP1 foci formation) followed by nuclear pyknosis.
View Article and Find Full Text PDFExcitotoxic cell death is one of the precipitating events in the development of temporal lobe epilepsy. Of particular prominence is the loss of GABAergic hilar neurons. Although the molecular mechanisms responsible for the selective vulnerability of these cells are not well understood, activation of the extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) pathway has been implicated in neuroprotective responses to excitotoxicity in other neuronal populations.
View Article and Find Full Text PDFThe rodent dentate gyrus (DG) is formed in the embryo when progenitor cells migrate from the dentate neuroepithelium to establish a germinal zone in the hilus and a secondary germinal matrix, near the fimbria, called the hippocampal subventricular zone (HSVZ). The developmental plasticity of progenitors within the HSVZ is not well understood. To delineate the migratory routes and fates of progenitors within this zone, we injected a replication-incompetent retrovirus, encoding the enhanced green fluorescent protein (EGFP), into the HSVZ of postnatal day 5 (P5) mice.
View Article and Find Full Text PDFDNA repair plays a critical, but imprecisely defined role in excitotoxic injury and neuronal survival throughout adulthood. We utilized an excitotoxic injury model to compare the location and phenotype of degenerating neurons in mice (strain 129-C57BL) deficient in the catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs), an enzyme required for nonhomologous end joining (NHEJ). Brains from untreated adult heterozygous and DNA-PKcs null mice displayed comparable cytoarchitecture and undetectable levels of cell death.
View Article and Find Full Text PDFDNA repair plays a critical, but imprecisely defined role in neuronal survival during cortical neurogenesis. We examined cortical development in mice deficient for the DNA end-joining protein, Ku70. At gestational day 14.
View Article and Find Full Text PDFThe roles of 3',5'-cyclic adenosine monophosphate (cAMP) and protein kinase A in 5-hydroxytryptamine (5-HT)7 receptor-mediated activation of extracellular-regulated kinase (ERK) were studied in cultured hippocampal neurons and transfected PC12 cells. Activation of ERK by neuronal Gs-coupled receptors has been thought to proceed through a protein kinase A-dependent pathway. In fact we identified coupling of 5-HT7 receptors to activation of adenylyl cyclase and protein kinase A.
View Article and Find Full Text PDFSalmonella has developed ways to modulate host cellular response in order to survive. Although the steps required for such modulation have been incompletely characterized, there is increasing evidence for a role for SptP, a type III secretion protein. In part, the actions of SptP are thought to be mediated through its reported inhibition of the extracellular-regulated kinase (ERK) MAP kinase pathway.
View Article and Find Full Text PDF1: Since all 5-HT(1) receptors couple to G(i)-type G proteins and inhibit adenylyl cyclase, the functional significance of five distinct subtypes of 5-HT(1) receptors has been unclear. 2: In previous studies we have used transfected cells to demonstrate that 5-HT(1B) receptors can couple more efficiently than 5-HT(1A) receptors to activation of extracellular signal-regulated kinase (ERK) and to inhibition of adenylyl cyclase. These findings suggested the possibility that individual 5-HT(1) receptors differentially couple to isoforms of G(ialpha).
View Article and Find Full Text PDF