Publications by authors named "Stanley J Pope"

Background: Sunlight contains UV radiation that affects human health in both detrimental (skin cancers) and beneficial (vitamin D(3)) ways. An evaluation of the vitamin D status of adult Americans (22-40, 41-59, 60+ yr) show many have deficient or insufficient serum levels of 25-hydroxyvitamin D, indicating they are not getting enough from dietary sources or sunlight. Those findings are in conflict with calculated values from the American Academy of Dermatology who insist people make "ample" vitamin D(3) (≥1,000 IU/day) from their "casual," or everyday, outdoor UV exposures even if they use sunscreens with sun protection factor 15.

View Article and Find Full Text PDF

Background: Sunlight contains ultraviolet B (UVB) radiation (290-315 nm) that affects human health in both detrimental (skin cancers) and beneficial (vitamin D3) ways. Serum 25-hydroxyvitamin D concentrations from young Americans (≤ 19 years) show that many have deficient (< 50 nmol/L, 20 ng/mL) or insufficient (< 75 nmol/L, 30 ng/mL) vitamin D levels, indicating that they are not getting enough sun exposure. Those findings are in conflict with some calculated, published values that suggest people make "ample" vitamin D3 (~ 1,000 IU/day) from their "casual," or everyday, outdoor exposures even if they diligently use sunscreens with sun protection factor (SPF) 15.

View Article and Find Full Text PDF

Most solar UV measurements are relative to the horizontal plane. However, problems arise when one uses those UV measurements to perform risk or benefit assessments because they do not yield the actual doses people get while they are outdoors. To better estimate the UV doses people actually get while outdoors, scientists need geometric conversion factors (GCF) that change horizontal plane irradiances to average irradiances on the human body.

View Article and Find Full Text PDF

Many solar UV measurements, either terrestrial or personal, weight the raw data by the erythemal action spectrum. However, a problem arises when one tries to estimate the benefit of vitamin D(3) production based on erythemally weighted outdoor doses, like those measured by calibrated R-B meters or polysulphone badges, because the differences between action spectra give dissimilar values. While both action spectra peak in the UVB region, the erythemal action spectrum continues throughout the UVA region while the previtamin D(3) action spectrum stops near that boundary.

View Article and Find Full Text PDF