Publications by authors named "Stanley J Opella"

Phospholipid bicelles are valuable membrane model systems to study membrane proteins by NMR and other physicochemical techniques. The range of bicelle compositions that are compatible with uniaxial alignment of the lipid bilayers in a magnetic field is still limited with regard to the addition of large amounts (>20%) of cholesterol and/or sphingolipids. Here, we demonstrate that -dodecyl-β--melibioside (DDMB), which was recently introduced as a detergent to produce sphingolipid-cholesterol-rich isotropic bicelles for solution NMR studies, can also be used to produce magnetically alignable lipid bilayers with high cholesterol content that are well suited for solid-state NMR of membrane proteins.

View Article and Find Full Text PDF

SARS-CoV-2 is the novel coronavirus that is the causative agent of COVID-19, a sometimes-lethal respiratory infection responsible for a world-wide pandemic. The envelope (E) protein, one of four structural proteins encoded in the viral genome, is a 75-residue integral membrane protein whose transmembrane domain exhibits ion channel activity and whose cytoplasmic domain participates in protein-protein interactions. These activities contribute to several aspects of the viral replication-cycle, including virion assembly, budding, release, and pathogenesis.

View Article and Find Full Text PDF

The availability of 3D printers and an assortment of polymers that can be fashioned into a wide variety of shapes provides opportunities to rethink the design and construction of probes for NMR spectroscopy. The direct interfacing of computer aided design (CAD) with precise 3D printing enables the simplification and optimization of probes through the rapid production of components. Here we demonstrate the use of 3D printing to fully integrate a permanent former for the radiofrequency (RF) coil with the sample chamber (equivalent to the sample tube).

View Article and Find Full Text PDF

Understanding microbe-host interactions at the molecular level is a major goal of fundamental biology and therapeutic drug development. Structural biology strives to capture biomolecular structures in action, but the samples are often highly simplified versions of the complex native environment. Here, we present an Escherichia coli model system that allows us to probe the structure and function of Ail, the major surface protein of the deadly pathogen Yersinia pestis.

View Article and Find Full Text PDF

Oriented sample solid-state NMR is a complementary approach to protein structure determination with the distinct advantage that it can be applied to supramolecular assemblies, such as viruses and membrane proteins, under near-native conditions, which generally include high levels of hydration as found in living systems. Thus, in order to perform H detected versions of multi-dimensional experiments water suppression techniques must be integrated into the pulse sequences. For example, H-windowed detection of H-N dipolar couplings enable multi-dimensional NMR experiments to be performed.

View Article and Find Full Text PDF

Well-hydrated phospholipid bilayers provide a near-native environment for membrane proteins. They enable the preparation of chemically-defined samples suitable for NMR and other spectroscopic experiments that reveal the structure, dynamics, and functional interactions of the proteins at atomic resolution. The synthetic polymer styrene maleic acid (SMA) can be used to prepare detergent-free samples that form macrodiscs with diameters greater than 30 nm at room temperature, and spontaneously align in the magnetic field of an NMR spectrometer at temperatures above 35 °C.

View Article and Find Full Text PDF

Extensive deuteration can be used to simplify NMR spectra by "diluting" and minimizing the effects of the abundant H nuclei. In solution-state NMR and magic angle spinning solid-state NMR of proteins, perdeuteration has been widely applied and its effects are well understood. Oriented sample solid-state NMR of proteins, however, is at a much earlier stage of development.

View Article and Find Full Text PDF

Cationic antimicrobial peptides (AMPs) are essential components of the innate immune system. They have attracted interest as novel compounds with the potential to treat infections associated with multi-drug resistant bacteria. In this study, we investigate piscidin 3 (P3), an AMP that was first discovered in the mast cells of hybrid striped bass.

View Article and Find Full Text PDF

Macrodiscs, which are magnetically alignable lipid bilayer discs with diameters of >30 nm, were obtained by solubilizing protein-containing liposomes with styrene-maleic acid copolymers. Macrodiscs provide a detergent-free phospholipid bilayer environment for biophysical and functional studies of membrane proteins under physiological conditions. The narrow resonance linewidths observed from membrane proteins in styrene-maleic acid macrodiscs advance structure determination by oriented sample solid-state NMR spectroscopy.

View Article and Find Full Text PDF

Transmembrane protein domains often contain interfacial aromatic residues, which may play a role in the insertion and stability of membrane helices. Residues such as Trp or Tyr, therefore, are often found situated at the lipid-water interface. We have examined the extent to which the precise radial locations of interfacial Trp residues may influence peptide helix orientation and dynamics.

View Article and Find Full Text PDF

The human chemokine interleukin-8 (IL-8; CXCL8) is a key mediator of innate immune and inflammatory responses. This small, soluble protein triggers a host of biological effects upon binding and activating CXCR1, a G protein-coupled receptor, located in the cell membrane of neutrophils. Here, we describe H-detected magic angle spinning solid-state NMR studies of monomeric IL-8 (1-66) bound to full-length and truncated constructs of CXCR1 in phospholipid bilayers under physiological conditions.

View Article and Find Full Text PDF

The structure of monomeric human chemokine IL-8 (residues 1-66) was determined in aqueous solution by NMR spectroscopy. The structure of the monomer is similar to that of each subunit in the dimeric full-length protein (residues 1-72), with the main differences being the location of the N-loop (residues 10-22) relative to the C-terminal α-helix and the position of the side chain of phenylalanine 65 near the truncated dimerization interface (residues 67-72). NMR was used to analyze the interactions of monomeric IL-8 (1-66) with ND-CXCR1 (residues 1-38), a soluble polypeptide corresponding to the N-terminal portion of the ligand binding site (Binding Site-I) of the chemokine receptor CXCR1 in aqueous solution, and with 1TM-CXCR1 (residues 1-72), a membrane-associated polypeptide that includes the same N-terminal portion of the binding site, the first trans-membrane helix, and the first intracellular loop of the receptor in nanodiscs.

View Article and Find Full Text PDF

In an effort to elucidate and engineer interactions in type II nonribosomal peptide synthetases, we analyzed biomolecular recognition between the essential peptidyl carrier proteins and adenylation domains using nuclear magnetic resonance (NMR) spectroscopy, molecular dynamics, and mutational studies. Three peptidyl carrier proteins, PigG, PltL, and RedO, in addition to their cognate adenylation domains, PigI, PltF, and RedM, were investigated for their cross-species activity. Of the three peptidyl carrier proteins, only PigG showed substantial cross-pathway activity.

View Article and Find Full Text PDF

Membrane proteins present a challenge for structural biology. In this article, we review some of the recent developments that advance the application of NMR to membrane proteins, with emphasis on structural studies in detergent-free, lipid bilayer samples that resemble the native environment. NMR spectroscopy is not only ideally suited for structure determination of membrane proteins in hydrated lipid bilayer membranes, but also highly complementary to the other principal techniques based on X-ray and electron diffraction.

View Article and Find Full Text PDF

The outer membrane protein Ail (Adhesion invasion locus) is one of the most abundant proteins on the cell surface of Yersinia pestis during human infection. Its functions are expressed through interactions with a variety of human host proteins, and are essential for microbial virulence. Structures of Ail have been determined by X-ray diffraction and solution NMR spectroscopy, but those samples contained detergents that interfere with functionality, thus, precluding analysis of the structural basis for Ail's biological activity.

View Article and Find Full Text PDF

Structure determination of proteins by NMR is unique in its ability to measure restraints, very accurately, in environments and under conditions that closely mimic those encountered in vivo. For example, advances in solid-state NMR methods enable structure determination of membrane proteins in detergent-free lipid bilayers, and of large soluble proteins prepared by sedimentation, while parallel advances in solution NMR methods and optimization of detergent-free lipid nanodiscs are rapidly pushing the envelope of the size limit for both soluble and membrane proteins. These experimental advantages, however, are partially squandered during structure calculation, because the commonly used force fields are purely repulsive and neglect solvation, Van der Waals forces and electrostatic energy.

View Article and Find Full Text PDF

We describe high resolution MAS solid-state NMR experiments that utilize (1)H detection with 60kHz magic angle spinning; simultaneous cross-polarization from (1)H to (15)N and (13)C nuclei; bidirectional cross-polarization between (13)C and (15)N nuclei; detection of both amide nitrogen and aliphatic carbon (1)H; and measurement of both (13)C and (15)N chemical shifts through multi-dimensional correlation experiments. Three-dimensional experiments correlate amide (1)H and alpha (1)H selectively with (13)C or (15)N nuclei in a polypeptide chain. Two separate three-dimensional spectra correlating (1)Hα/(13)Cα/(1)H(N) and (1)H(N)/(15)N/(1)Hα are recorded simultaneously in a single experiment, demonstrating that a twofold savings in experimental time is potentially achievable.

View Article and Find Full Text PDF

Virus protein U (Vpu) from HIV-1, a small membrane protein composed of a transmembrane helical domain and two α-helices in an amphipathic cytoplasmic domain, down modulates several cellular proteins, including CD4, BST-2/CD317/tetherin, NTB-A, and CCR7. The interactions of Vpu with these proteins interfere with the immune system and enhance the release of newly synthesized virus particles. It is essential to characterize the structure and dynamics of Vpu in order to understand the mechanisms of the protein-protein interactions, and potentially to discover antiviral drugs.

View Article and Find Full Text PDF

Type II nonribosomal peptide synthetases (NRPS) generate exotic amino acid derivatives that, combined with additional pathways, form many bioactive natural products. One family of type II NRPSs produce pyrrole moieties, which commonly arise from proline oxidation while tethered to a conserved, type II peptidyl carrier protein (PCP), as exemplified by PltL in the biosynthesis of pyoluteorin. We sought to understand the structural role of pyrrole PCPs in substrate and protein interactions through the study of pyrrole analogs tethered to PltL.

View Article and Find Full Text PDF

The highly anisotropic environment of the lipid bilayer membrane imposes significant constraints on the structures and functions of membrane proteins. However, NMR structure calculations typically use a simple repulsive potential that neglects the effects of solvation and electrostatics, because explicit atomic representation of the solvent and lipid molecules is computationally expensive and impractical for routine NMR-restrained calculations that start from completely extended polypeptide templates. Here, we describe the extension of a previously described implicit solvation potential, eefxPot, to include a membrane model for NMR-restrained calculations of membrane protein structures in XPLOR-NIH.

View Article and Find Full Text PDF

Many viruses express small hydrophobic membrane proteins. These proteins are often referred to as viroporins because they exhibit ion channel activity. However, the channel activity has not been definitively associated with a biological function in all cases.

View Article and Find Full Text PDF

The restriction factor BST2 (tetherin) prevents the release of enveloped viruses from the host cell and is counteracted by HIV-1 Vpu. Vpu and BST2 interact directly via their transmembrane domains. This interaction enables Vpu to induce the surface down-regulation and the degradation of BST2, but neither of these activities fully accounts for the ability of Vpu to enhance virion release.

View Article and Find Full Text PDF

The native environment for a membrane protein is a phospholipid bilayer. Because the protein is immobilized on NMR timescales by the interactions within a bilayer membrane, solid-state NMR methods are essential to obtain high-resolution spectra. Approaches have been developed for both unoriented and oriented samples, however, they all rest on the foundation of the most fundamental aspects of solid-state NMR, and the chemical shift and homo- and hetero-nuclear dipole-dipole interactions.

View Article and Find Full Text PDF

The use of paramagnetic constraints in protein NMR is an active area of research because of the benefits of long-range distance measurements (>10 Å). One of the main issues in successful execution is the incorporation of a paramagnetic metal ion into diamagnetic proteins. The most common metal ion tags are relatively long aliphatic chains attached to the side chain of a selected cysteine residue with a chelating group at the end where it can undergo substantial internal motions, decreasing the accuracy of the method.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: