The immunity-related GTPases (IRGs) are a family of proteins that are induced by interferon (IFN)-γ and play pivotal roles in immune and inflammatory responses. IRGs ostensibly function as dynamin-like proteins that bind to intracellular membranes and promote remodeling and trafficking of those membranes. Prior studies have shown that loss of Irgm1 in mice leads to increased lethality to bacterial infections as well as enhanced inflammation to non-infectious stimuli; however, the mechanisms underlying these phenotypes are unclear.
View Article and Find Full Text PDFThe Immunity-Related GTPases (IRG) are a family of large GTPases that mediate innate immune responses. Irgm1 is particularly critical for immunity to bacteria and protozoa, and for inflammatory homeostasis in the intestine. Although precise functions for Irgm1 have not been identified, prior studies have suggested roles in autophagy/mitophagy, phagosome remodeling, cell motility, and regulating the activity of other IRG proteins.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
October 2013
Crohn's disease (CD) is a chronic, immune-mediated, inflammatory disorder of the intestine that has been linked to numerous susceptibility genes, including the immunity-related GTPase (IRG) M (IRGM). IRGs comprise a family of proteins known to confer resistance to intracellular infections through various mechanisms, including regulation of phagosome processing, cell motility, and autophagy. However, despite its association with CD, the role of IRGM and other IRGs in regulating intestinal inflammation is unclear.
View Article and Find Full Text PDFInterferon-inducible GTPases of the Immunity Related GTPase (IRG) and Guanylate Binding Protein (GBP) families provide resistance to intracellular pathogenic microbes. IRGs and GBPs stably associate with pathogen-containing vacuoles (PVs) and elicit immune pathways directed at the targeted vacuoles. Targeting of Interferon-inducible GTPases to PVs requires the formation of higher-order protein oligomers, a process negatively regulated by a subclass of IRG proteins called IRGMs.
View Article and Find Full Text PDFThe immunity-related GTPases (IRGs) are a family of proteins induced by interferon-γ that play a crucial role in innate resistance to intracellular pathogens. The M subfamily of IRG proteins (IRGM) plays a profound role in this context, in part because of the ability of its members to regulate the localization and expression of other IRG proteins. We present here evidence that IRGM proteins affect the localization of the guanylate-binding proteins (GBPs), a second family of interferon-induced GTP-binding proteins that also function in innate immunity.
View Article and Find Full Text PDFIRG are a family of IFN-regulated proteins that are critical for resistance to infection. Mouse IRG proteins are divided into GMS and GKS subfamilies, based on a sequence within the G1 GTP-binding motif. The GMS proteins have a particularly profound impact on immunity, as typified by Irgm1, of which absence leads to a complete loss of resistance to a variety of intracellular bacteria and protozoa.
View Article and Find Full Text PDFThe immunity-related GTPases (IRG), also known as p47 GTPases, are a family of proteins that are tightly regulated by IFNs at the transcriptional level and serve as key mediators of IFN-regulated resistance to intracellular bacteria and protozoa. Among the IRG proteins, loss of Irgm1 has the most profound impact on IFN-gamma-induced host resistance at the physiological level. Surprisingly, the losses of host resistance seen in the absence of Irgm1 are sometimes more striking than those seen in the absence of IFN-gamma.
View Article and Find Full Text PDFP311 is an 8-kDa protein that is expressed in many brain regions, particularly the hippocampus, cerebellum and olfactory lobes, and is under stringent regulation by developmental, mitogenic and other physiological stimuli. P311 is thought to be involved in the transformation and motility of neural cells; however, its role in normal brain physiology is undefined. To address this point, P311-deficient mice were developed through gene targeting and their behaviors were characterized.
View Article and Find Full Text PDFIRG proteins, or immunity-related GTPases (also known as p47 GTPases), are a group of IFN-regulated proteins that are highly expressed in response to infection. The proteins localize to intracellular membranes including vacuoles that contain pathogens in infected macrophages and other host cells. Current data indicate that the IRG protein Irgm1 (LRG-47) is critical for resistance to intracellular bacteria.
View Article and Find Full Text PDFThe cytokine gamma interferon (IFN-gamma) is critical for resistance to Toxoplasma gondii. IFN-gamma strongly activates macrophages and nonphagocytic host cells to limit intracellular growth of T. gondii; however, the cellular factors that are required for this effect are largely unknown.
View Article and Find Full Text PDFThe importance of lymphotoxin (LT) betaR (LTbetaR) as a regulator of lymphoid organogenesis is well established, but its role in host defense has yet to be fully defined. In this study, we report that mice deficient in LTbetaR signaling were highly susceptible to infection with murine CMV (MCMV) and early during infection exhibited a catastrophic loss of T and B lymphocytes, although the majority of lymphocytes were themselves not directly infected. Moreover, bone marrow chimeras revealed that lymphocyte survival required LTalpha expression by hemopoietic cells, independent of developmental defects in lymphoid tissue, whereas LTbetaR expression by both stromal and hemopoietic cells was needed to prevent apoptosis.
View Article and Find Full Text PDFInfection of BALB/c mice with murine cytomegalovirus (MCMV) leads to CD8 cell responses to an immunodominant epitope YPHFMPTNL. We presented this epitope as a nasal peptide vaccine in combination with cholera toxin adjuvant, and evaluated immune responses and protection from MCMV challenge. Vaccination of naive mice generated elevated numbers of peptide-specific interferon-gamma-secreting splenocytes (median 80/million, range 60 to 490), compared to control mice (median 2/million, range -4.
View Article and Find Full Text PDFDifferentiation of dendritic cells (DCs) into particular subsets may act to shape innate and adaptive immune responses, but little is known about how this occurs during infections. Plasmacytoid dendritic cells (PDCs) are major producers of interferon (IFN)-alpha/beta in response to many viruses. Here, the functions of these and other splenic DC subsets are further analyzed after in vivo infection with murine cytomegalovirus (MCMV).
View Article and Find Full Text PDFWe cloned six mycobacterial antigens into a mammalian expression vector as fusion proteins with the enhanced green fluorescent protein (EGFP). Plasmid DNA was injected intramuscularly, and the injection sites were examined 1 week later. Expression of each antigen-EGFP fusion protein was visualized as green fluorescence in muscle tissue sections.
View Article and Find Full Text PDF