Publications by authors named "Staniszewski A"

This review article offers a comprehensive overview of the current understanding of using metagenomic tools in food microbiome research. It covers the scientific foundation and practical application of genetic analysis techniques for microbial material from food, including bioinformatic analysis and data interpretation. The method discussed in the article for analyzing microorganisms in food without traditional culture methods is known as food metagenomics.

View Article and Find Full Text PDF

A growing number of studies link dysfunction of macroautophagy/autophagy to the pathogenesis of diseases such as Alzheimer disease (AD). Given the global importance of autophagy for homeostasis, how its dysfunction can lead to specific neurological changes is puzzling. To examine this further, we compared the global deactivation of autophagy in the adult mouse using the iKO with the impact of AD-associated pathogenic changes in autophagic processing of synaptic proteins.

View Article and Find Full Text PDF

Introduction: Impaired brain protein synthesis, synaptic plasticity, and memory are major hallmarks of Alzheimer's disease (AD). The ketamine metabolite (2R,6R)-hydroxynorketamine (HNK) has been shown to modulate protein synthesis, but its effects on memory in AD models remain elusive.

Methods: We investigated the effects of HNK on hippocampal protein synthesis, long-term potentiation (LTP), and memory in AD mouse models.

View Article and Find Full Text PDF

Several internal and external factors can influence animals' hormonal activity. Cortisol level in hair and wool determines chronic stress, which is connected with the long-term HPA axis effect. Wool cortisol levels in alpacas have never been determined to this time.

View Article and Find Full Text PDF

One approach towards maintaining healthy microbiota in the human gastrointestinal tract is through the consumption of probiotics. Until now, the majority of probiotic research has focused on probiotic bacteria, but over the last few years more and more studies have demonstrated the probiotic properties of yeast, and also of species besides the well-studied var. .

View Article and Find Full Text PDF

Phosphodiesterase 5 (PDE5) is a cyclic guanosine monophosphate-degrading enzyme involved in numerous biological pathways. Inhibitors of PDE5 are important therapeutics for the treatment of neurodegenerative diseases, including Alzheimer's disease (AD). We previously reported the first generation of quinoline-based PDE5 inhibitors for the treatment of AD.

View Article and Find Full Text PDF

Introduction: Alzheimer's disease (AD) is characterized by neurotoxic immuno-inflammation concomitant with cytotoxic oligomerization of amyloid beta (Aβ) and tau, culminating in concurrent, interdependent immunopathic and proteopathic pathogeneses.

Methods: We performed a comprehensive series of in silico, in vitro, and in vivo studies explicitly evaluating the atomistic-molecular mechanisms of cytokine-mediated and Aβ-mediated neurotoxicities in AD.  Next, 471 new chemical entities were designed and synthesized to probe the pathways identified by these molecular mechanism studies and to provide prototypic starting points in the development of small-molecule therapeutics for AD.

View Article and Find Full Text PDF

Probiotics are live microorganisms which when administered in adequate amounts confer a health benefit on the host. Besides the well-known and tested lactic acid bacteria, yeasts may also be probiotics. The subject of probiotic and potentially probiotic yeasts has been developing and arising potential for new probiotic products with novel properties, which are not offered by bacteria-based probiotics available on the current market.

View Article and Find Full Text PDF

Background: The serine/threonine protein phosphatase, PP2A, is thought to play a central role in the molecular pathogenesis of Alzheimer's disease (AD), and the activity and substrate specificity of PP2A is regulated, in part, through methylation and demethylation of its catalytic subunit. Previously, we found that transgenic overexpression of the PP2A methyltransferase, LCMT-1, or the PP2A methylesterase, PME-1, altered the sensitivity of mice to impairments caused by acute exposure to synthetic oligomeric amyloid-β (Aβ).

Objective: Here we sought to test the possibility that these molecules also controlled sensitivity to impairments caused by chronically elevated levels of Aβ produced in vivo.

View Article and Find Full Text PDF

The amyloid hypothesis posits that the amyloid-beta (Aβ) protein precedes and requires microtubule-associated protein tau in a sort of trigger-bullet mechanism leading to Alzheimer's disease (AD) pathology. This sequence of events has become dogmatic in the AD field and is used to explain clinical trial failures due to a late start of the intervention when Aβ already activated tau. Here, using a multidisciplinary approach combining molecular biological, biochemical, histopathological, electrophysiological, and behavioral methods, we demonstrated that tau suppression did not protect against Aβ-induced damage of long-term synaptic plasticity and memory, or from amyloid deposition.

View Article and Find Full Text PDF

Beta-amyloid (Aβ) is thought to play a critical role in Alzheimer's disease (AD), and application of soluble oligomeric forms of Aβ produces AD-like impairments in cognition and synaptic plasticity in experimental systems. We found previously that transgenic overexpression of the PP2A methylesterase, PME-1, or the PP2A methyltransferase, LCMT-1, altered the sensitivity of mice to Aβ-induced impairments, suggesting that PME-1 inhibition may be an effective approach for preventing or treating these impairments. To explore this possibility, we examined the behavioral and electrophysiological effects of acutely applied synthetic Aβ oligomers in male and female mice heterozygous for either a KO or an gene-trap mutation.

View Article and Find Full Text PDF

Background: Soluble aggregates of oligomeric forms of tau protein (oTau) have been associated with impairment of synaptic plasticity and memory in Alzheimer's disease. However, the molecular mechanisms underlying the synaptic and memory dysfunction induced by elevation of oTau are still unknown.

Methods: This work used a combination of biochemical, electrophysiological and behavioral techniques.

View Article and Find Full Text PDF

Defective brain hormonal signaling has been associated with Alzheimer's disease (AD), a disorder characterized by synapse and memory failure. Irisin is an exercise-induced myokine released on cleavage of the membrane-bound precursor protein fibronectin type III domain-containing protein 5 (FNDC5), also expressed in the hippocampus. Here we show that FNDC5/irisin levels are reduced in AD hippocampi and cerebrospinal fluid, and in experimental AD models.

View Article and Find Full Text PDF

Introduction: Translational inhibition of amyloid precursor protein (APP) by Posiphen has been shown to reduce APP and its fragments in cell culture, animal models, and mildly cognitively impaired patients, making it a promising drug candidate for the treatment of Alzheimer's disease.

Methods: We used a mouse model of Alzheimer's disease (APP/presenilin-1) to examine Posiphen's efficacy, pharmacodynamics, and pharmacokinetics.

Results: Posiphen treatment normalized impairments in spatial working memory, contextual fear learning, and synaptic function in APP/presenilin-1 mice, without affecting their visual acuity, motor skills, or motivation and without affecting wild-type mice.

View Article and Find Full Text PDF

Oligomerization of soluble tau protein is attracting the attention of an increasingly larger number of scientists involved in research on Alzheimer's disease and other tauopathies. A variety of methods have been developed for the purification of proteins from biological tissues and bacterial cells. Various types of high performance liquid chromatography (HPLC) and affinity tags represent the most common techniques for isolating proteins.

View Article and Find Full Text PDF

Soluble forms of oligomeric beta-amyloid (Aβ) are thought to play a central role in Alzheimer's disease (AD). Transgenic manipulation of methylation of the serine/threonine protein phosphatase, PP2A, was recently shown to alter the sensitivity of mice to AD-related impairments resulting from acute exposure to elevated levels of Aβ. In addition, eicosanoyl-5-hydroxytryptamide (EHT), a naturally occurring component from coffee beans that modulates PP2A methylation, was shown to confer therapeutic benefits in rodent models of AD and Parkinson's disease.

View Article and Find Full Text PDF

Small ubiquitin-related modifiers (SUMOs) conjugated or bound to target proteins can affect protein trafficking, processing and solubility. SUMOylation has been suggested to play a role in the amyloid plaque and neurofibrillary tangle pathology of Alzheimer disease (AD) and related neurodegenerative diseases. The current study examines the impact of SUMO1 on processing of the amyloid precursor protein (APP) leading to the production and deposition of the amyloid-β (Aβ) peptide.

View Article and Find Full Text PDF

Phosphodiesterase 5 (PDE5) hydrolyzes cyclic guanosine monophosphate (cGMP) leading to increased levels of the cAMP response element binding protein (CREB), a transcriptional factor involved with learning and memory processes. We previously reported potent quinoline-based PDE5 inhibitors (PDE5Is) for the treatment of Alzheimer's disease (AD). However, the low aqueous solubility rendered them undesirable drug candidates.

View Article and Find Full Text PDF

The concurrent application of subtoxic doses of soluble oligomeric forms of human amyloid-beta (oAβ) and Tau (oTau) proteins impairs memory and its electrophysiological surrogate long-term potentiation (LTP), effects that may be mediated by intra-neuronal oligomers uptake. Intrigued by these findings, we investigated whether oAβ and oTau share a common mechanism when they impair memory and LTP in mice. We found that as already shown for oAβ, also oTau can bind to amyloid precursor protein (APP).

View Article and Find Full Text PDF

Elevated levels of the β-amyloid peptide (Aβ) are thought to contribute to cognitive and behavioral impairments observed in Alzheimer's disease (AD). Protein phosphatase 2A (PP2A) participates in multiple molecular pathways implicated in AD, and its expression and activity are reduced in postmortem brains of AD patients. PP2A is regulated by protein methylation, and impaired PP2A methylation is thought to contribute to increased AD risk in hyperhomocysteinemic individuals.

View Article and Find Full Text PDF

Non-fibrillar soluble oligomeric forms of amyloid-β peptide (oAβ) and tau proteins are likely to play a major role in Alzheimer's disease (AD). The prevailing hypothesis on the disease etiopathogenesis is that oAβ initiates tau pathology that slowly spreads throughout the medial temporal cortex and neocortices independently of Aβ, eventually leading to memory loss. Here we show that a brief exposure to extracellular recombinant human tau oligomers (oTau), but not monomers, produces an impairment of long-term potentiation (LTP) and memory, independent of the presence of high oAβ levels.

View Article and Find Full Text PDF

Alzheimer's disease, one of the most important brain pathologies associated with neurodegenerative processes, is related to overactivation of calpain-mediated proteolysis. Previous data showed a compelling efficacy of calpain inhibition against abnormal synaptic plasticity and memory produced by the excess of amyloid-β, a distinctive marker of the disease. Moreover, a beneficial effect of calpain inhibitors in Alzheimer's disease is predictable by the occurrence of calpain hyperactivation leading to impairment of memory-related pathways following abnormal calcium influxes that might ensue independently of amyloid-β elevation.

View Article and Find Full Text PDF

Small ubiquitin-like modifier-1 (SUMO1) plays a number of roles in cellular events and recent evidence has given momentum for its contributions to neuronal development and function. Here, we have generated a SUMO1 transgenic mouse model with exclusive overexpression in neurons in an effort to identify in vivo conjugation targets and the functional consequences of their SUMOylation. A high-expressing line was examined which displayed elevated levels of mono-SUMO1 and increased high molecular weight conjugates in all brain regions.

View Article and Find Full Text PDF