The research was conducted on yellow lupin (Lupinus luteus L.) mature seeds, developing cotyledons, developing pods, and seedlings. The main storage compound in yellow lupin seeds is protein, whose content may reach up to 45%.
View Article and Find Full Text PDFThe research was conducted on embryo axes of yellow lupin (Lupinus luteus L.), white lupin (Lupinus albus L.) and Andean lupin (Lupinus mutabilis Sweet), which were isolated from imbibed seeds and cultured for 96h in vitro under different conditions of carbon and nitrogen nutrition.
View Article and Find Full Text PDFThe long-term storage of seeds generally reduces their viability and vigour. The aim of this work was to evaluate the effect of long-term storage on beech (Fagus sylvatica L.) seeds at optimal conditions, over 9 years, on the total and soluble protein levels and activity of proteolytic enzymes, including endopeptidases, carboxypeptidases and aminopeptidases, as well as free amino acid levels and protein synthesis, in dry seeds, after imbibition and during cold stratification leading to dormancy release and germination.
View Article and Find Full Text PDFFreshly harvested silver maple (Acer saccharinum L.) seeds were soaked in either sodium selenite (10mg/L) or water for 6h. After washing and air drying, seeds were desiccated at 22°C at a RH of 45-50% to comparable water levels from 50 to 12%.
View Article and Find Full Text PDFA comparative study was carried out on the dynamics of lipid accumulation in developing seeds of three lupine species. Lupine seeds differ in lipid content; yellow lupine (Lupinus luteus L.) seeds contain about 6%, white lupine (Lupinus albus L.
View Article and Find Full Text PDFLevels of sucrose and raffinose family oligosaccharides (RFOs) (raffinose and stachyose) were determined in beech (Fagus sylvatica L.) seeds during development, maturation, desiccation and storage. An increase in RFOs and a marked decrease in the S:(R+St) ratio (i.
View Article and Find Full Text PDFThe ascorbate-glutathione system was studied during development and desiccation of seeds of two Acer species differing in desiccation tolerance: Norway maple (Acer platanoides L., orthodox) and sycamore (Acer pseudoplatanus L., recalcitrant).
View Article and Find Full Text PDFAscorbate-glutathione systems were studied during desiccation of recalcitrant seeds of the silver maple (Acer saccharinum L.). The desiccated seeds gradually lost their germination capacity and this was strongly correlated with an increase in electrolyte leakage from seeds.
View Article and Find Full Text PDFThe accumulation of reactive oxygen species (ROS) in seed tissues plays an important role in the loss of seed viability during storage. In the present study, we examined whether the loss of germination capacity and viability of beech (Fagus sylvatica L.) seeds during storage under different temperatures (4, 20 and 30 degrees C) and relative humidity levels (45% and 75% RH) is associated with: (1) an increase in the level of ROS, such as superoxide radical (O2*-), oxygen peroxide (H2O2); and, (2) changes in low molecular antioxidants (ascorbate and glutathione) and enzymatic scavengers such as ascorbate peroxidase dehydroascorbate reductase, glutathione reductase, catalase, superoxide dismutase and guaiacol peroxidase.
View Article and Find Full Text PDF