The paper presents measurement data concerning the degree of acidification of precipitation collected during a 6-month measurement campaign carried out in an immediate vicinity of a power plant, where the cooling tower was used for discharging flue gases as a product of coal combustion. As reference, data obtained from parallel measurements carried out at a monitoring station considered as city background station were used. High acidity of precipitation was anticipated due to reactions of acid gases contained in the combustion gases with water, which already occur inside the cooling tower.
View Article and Find Full Text PDFAcidity of products resulting from the reaction of flue gas components emitted from a coal-fired power plant with water contained in a vapor plume from a wet cooling tower was analyzed in a close vicinity of a power plant (710 m from the stack and 315 m from the cooling tower). Samples of this mixture were collected using a precipitation funnel where components of the mixed plumes were discharged from the atmosphere with the rainfall. To identify situations when the precipitation occurred at the same time as the wind directed the mixed vapor and flue gas plumes above the precipitation funnel, an ultrasound anemometer designed for 3D measurements of the wind field located near the funnel was used.
View Article and Find Full Text PDFThe paper reviews the current state of knowledge regarding European emissions of mercury and presents estimates of European emissions of mercury to the atmosphere from anthropogenic sources for the year 2000. This information was then used as a basis for Hg emission scenario development until the year 2020. Combustion of coal in power plants and residential heat furnaces generates about half of the European emissions being 239 tonnes.
View Article and Find Full Text PDFData from an experiment concerning Hg emission from coal combustion in a furnace of 5.6 kW capacity are presented. The goal of the experiment was to define how much of the mercury in coal combusted in the stove was emitted to the atmosphere in gaseous form because vapors contribute mainly to human intake of the metal from ambient air.
View Article and Find Full Text PDF