Publications by authors named "Stanislaw Fabczak"

In Tetrahymena, besides apparent cell polarity generated by specialized cortical structures, several proteins display a specific asymmetric distribution suggesting their involvement in the generation and the maintenance of cell polarization. One of these proteins, a membrane skeleton protein called fenestrin, forms an antero-posterior gradient, and is accepted as a marker of cell polarity during different cellular processes, such as cell division or oral replacement. In conjugating cells, fenestrin forms an intracytoplasmic net which participates in pronuclear exchange.

View Article and Find Full Text PDF

Recent studies have implicated the phosducin-like protein-2 (PHLP2) in regulation of CCT, a chaperonin whose activity is essential for folding of tubulin and actin. However, the exact molecular function of PHLP2 is unclear. Here we investigate the significance of PHLP2 in a ciliated unicellular model, Tetrahymena thermophila, by deleting its single homolog, Phlp2p.

View Article and Find Full Text PDF

Basal bodies are tightly controlled not only for their time of duplication but also for their movements, which ensure proper division and morphogenesis. However, the mechanisms underlying these movements only begin to be explored. We describe here a novel basal body appendage in Paramecium, the anterior left filament (ALF), which develops transiently from the mother basal body before duplication and disassembles once the new basal body is docked at the surface.

View Article and Find Full Text PDF

The coloured ciliate Blepharisma japonicum changes swimming velocity (positive photokinesis) and elongates its body in response to a prolonged illumination. We have recently proposed that alterations in the phosphorylation level of the ciliate phosducin (Pdc) may be involved in light-induced cell elongation, which in turn affects the interaction of βγ-dimer of G-proteins (Gβγ) with β-tubulin and subsequent cytoskeletal remodelling. The cellular mechanism that governs the photokinetic effect in this ciliate has not been elucidated.

View Article and Find Full Text PDF

Blepharisma japonicum ciliates display reversible cell elongation in response to lasting bright illumination. This light-induced phenomenon has been ascribed to the active sliding of the cortical microtubules of the ciliate. The detailed intracellular signaling pathway that activates the microtubule network in response to light, resulting in cell elongation, is unknown.

View Article and Find Full Text PDF

Immunoblotting of isolated cell membrane fractions from ciliates Blepharisma japonicum and Stentor coeruleus with a polyclonal antibody raised against rhodopsin revealed one strong protein band of about 36 kDa, thought to correspond to protozoan rhodopsin. Inspection of both ciliates labeled with the same antibody using a confocal microscope confirmed the immunoblotting result and demonstrated the presence of these rhodopsin-like molecules localized within the cell membrane area. Immunoblot analysis of the ciliate membrane fractions resolved by two-dimensional gel electrophoresis identified two distinct 36 kDa spots at pIs of 4.

View Article and Find Full Text PDF

Chaperonins are large oligomers consisting of two superimposed rings, each enclosing a cavity used for the folding of other proteins. They have been divided into two groups. Chaperonins of type I were identified in mitochondria and chloroplasts (Hsp60) or bacterial cytosol (GroEL) as well.

View Article and Find Full Text PDF

Immunological techniques and high-resolution FRET analysis were employed to investigate the in vivo colocalization and interaction of phosducin (Pdc) with the betagamma-subunits of G-protein (Gbetagamma) in the ciliate Blepharisma japonicum. Immunological techniques revealed that illumination of cells resulted in a decrease in phosphorylation levels of Pdc and its colocalization with Gbetagamma. The observed light-induced Pdc dephosphorylation was also accompanied by significant enhancement of Gbetagamma binding by this molecule.

View Article and Find Full Text PDF

G protein-coupled receptor kinases (GRKs) are key modulators of G protein-coupled receptor (GPCR) signaling. They constitute a family of seven mammalian serine-threonine protein kinases that phosphorylate agonist-bound receptor. GRKs-mediated receptor phosphorylation rapidly initiates profound impairment of receptor signaling and desensitization.

View Article and Find Full Text PDF

Blepharisma japonicum and Stentor coeruleus are related ciliates, conspicuous by their photosensitivity. They are capable of avoiding illuminated areas in the surrounding medium, gathering exclusively in most shaded places (photodispersal). Such behaviour results mainly from motile photophobic response occurring in ciliates.

View Article and Find Full Text PDF

We have previously reported that motile photophobic response in ciliate Blepharisma japonicum correlates with dephosphorylation of a cytosolic 28 kDa phosphoprotein (PP28) exhibiting properties similar to those of phosducin. Here we demonstrate in in vivo phosphorylation assay that the light-elicited dephosphorylation of the PP28 is significantly modified by cell incubation with substances known to modulate protein phosphatase and kinase activities. Immunoblot analyses showed that incubation of ciliates with okadaic acid and calyculin A, potent inhibitors of type 1 or 2A protein phosphatases, distinctly increased phosphorylation of PP28 in dark-adapted cells and markedly weakened dephosphorylation of the ciliate phosducin following cell illumination.

View Article and Find Full Text PDF

Examination of ciliate Blepharisma japonicum whole cell lysates with an antibody against phosphoserine and in vivo labeling of cells with radioactive phosphate revealed that the photophobic response in the ciliate is accompanied by a rapid dephosphorylation of a 28 kDa protein and an enhanced phosphorylation of a 46 kDa protein. Analysis with antibodies raised against rat phosducin or human phosducin-like proteins, identified one major protein of a molecular weight of 28 kDa, and two protein bands of 40 kDa and 93 kDa. While the identified ciliate phosducin is phosphorylated in a light-dependent manner, both phosducin-like proteins exhibit no detectable dependence of phosphorylation upon illumination.

View Article and Find Full Text PDF

The protozoan ciliate Stentor coeruleus displays a step-up photophobic response to an increase in light intensity in its environment. The motile response consists of a delayed stop of ciliary beating and transient ciliary reversal period. Such light-avoiding behavior was significantly influenced by an incubation of cells with l-cis-diltiazem, a common blocker of cyclic guanosine monophosphate (cGMP)-gated ion channel conductance.

View Article and Find Full Text PDF