Publications by authors named "Stanislav S Lazarev"

We describe the development of a preparative method to isolate molluscan catch muscle, calponin. This method is based on the ability of calponin to interact with actin in a temperature-dependent manner. After extracting thin filaments, as previously described, the extract was ultracentrifuged at 2 °C.

View Article and Find Full Text PDF

We have developed a method of obtaining natural actin from smooth muscles of the bivalves on the example of the Сrenomytilus grayanus catch muscle. The muscles were previously rigorized to prevent a loss of thin filaments during homogenization and washings. Thin filaments were isolated with a low ionic strength solution in the presence of ATP and sodium pyrophosphate.

View Article and Find Full Text PDF

Muscles of bivalve molluscs have double calcium regulation--myosin-linked and actin-linked. While the mechanism of myosin-linked regulation is sufficiently studied, there is still no consensus on the mechanism of actin-linked regulation. Earlier we showed a high degree of Ca2+-sensitivity of thin filaments from the adductor muscle of the mussel Crenomytilus grayanus (Mytiloida).

View Article and Find Full Text PDF

In this study, we investigated hybrid and non-hybrid actomyosin models including key contractile proteins: actin, myosin, and tropomyosin. These proteins were isolated from the rabbit skeletal muscle and the catch muscle of the mussel Crenomytilus grayanus. Our results confirmed literature data on an unusual ability of bivalve's tropomyosin to inhibit Mg-ATPase activity of skeletal muscle actomyosin.

View Article and Find Full Text PDF

We isolated Ca(2+)-regulated thin filaments from the smooth muscle of the mussel Crenomytilus grayanus and studied the protein composition of different preparations from this muscle: whole muscle, heat-stable extract, fractions from heat-stable extract, thin filaments and intermediate stages of thin filaments purification. Among the protein components of the above-listed preparations, we did not find caldesmon (CaD), although two isoforms of a calponin-like (CaP-like) protein, which along with CaD is characteristic of vertebrate smooth muscle, were present in thin filaments. Thus, CaD is not Ca(2+)-regulator of thin filaments of this muscle.

View Article and Find Full Text PDF