Publications by authors named "Stanislav S Dukhin"

Current drug delivery devices (DDD) are mainly based on the use of diffusion as the main transport process. Diffusion-driven processes can only achieve low release rate because diffusion is a slow process. This represents a serious obstacle in the realization of recent successes in the suppression of lymphatic metastasis and in the prevention of limb and organ transplant rejection.

View Article and Find Full Text PDF

Hemofiltration (HF) is used extensively for continuous renal replacement therapy, but long-term treatment is limited by thrombosis leading to fiber clogging. Maximum filter life is typically less than 20 hours. We have achieved for the first time continuous and consistent hemofiltration for more than 100 hours using outside-in hemofiltration with the blood flow into the inter-fiber space (IFS).

View Article and Find Full Text PDF

Combining the approach of colloid transport with the generalized Higuchi theory of drug release and with the concept of minimum inhibitory concentration (MIC) known in microbiology, the theory of effective drug release from implants has been developed. Effective release of an antibiotic at a concentration above MIC is a necessary condition to achieve protection against infection from implants such as central catheters. The Higuchi theory in its present form is not predictive of the therapeutic effect from medical implants.

View Article and Find Full Text PDF

Drug delivery using nanoparticles as drug carriers has recently attracted the attention of many investigators. Targeted delivery of nanoparticles to the lymph nodes is especially important to prevent cancer metastasis or infection, and to diagnose disease stage. However, systemic injection of nanoparticles often results in organ toxicity because they reach and accumulate in all the lymph nodes in the body.

View Article and Find Full Text PDF

The Stokes equation is commonly used within the field of electrokinetics of hard impermeable surfaces while the Brinkman equation is adopted for tackling hydrodynamics in the framework of soft (permeable) surface electrokinetics (SSE). The latter was initially proposed for modeling the hydrodynamics in so-called hybrid systems that consist of a porous medium and an adjacent fluid phase basically because the conventional Darcy law or Debye and Bueche model initially proposed for that purpose failed to provide the required velocity and shear stress-continuity conditions at the porous media-fluid interface. However, even though the physical background of the Brinkman equation and its boundary conditions have been discussed when applied to the hydrodynamics of hybrid systems, controversy still remains with respect to their applicability in the field of SSE.

View Article and Find Full Text PDF

A technology is elaborated for the fabrication of a novel tympanostomy tube (TT) from solidified polymer melts (Elvax and Polyurethane) and antibiotics (Ciprofloxacin and Usnic acid) for insertion into tympanic membrane (ear drum) according to the established surgical procedure. The long-term in vitro release kinetics of the antibiotics into liquid water has been assessed using standard methods. The measured kinetic curves revealed two stages of antibiotic release into the finite space.

View Article and Find Full Text PDF

Charge formation within surface-confined polyelectrolyte layers (PL)--including biopolymer films--is of highest importance in the application of biomedical materials in demanding products. However, due to the lack of adequate analytical tools the impact of electrical charging on the intra- and intermolecular structure of surface-confined PL so far remained poorly understood. The traditional characterization of hard surfaces by electrokinetic (zeta potential) measurements cannot be applied for the characterization of the internal structure of thick PL, although the traditional electrokinetics remains important for characterizing PL/electrolyte interfaces.

View Article and Find Full Text PDF

The existence of electrophoretic mobility at high electrolyte concentrations defines a remarkable peculiarity in the electrosurface characteristics of soft particles. According to Ohshima [H. Ohshima, Colloids Surf.

View Article and Find Full Text PDF

Surface conductivity (SC) has been demonstrated to be a valuable parameter for the characterization of surface-bound polyelectrolyte layers (PLs). The measurement of the SC in dependence of the pH and solution concentration yields information about the Donnan potential, PsiD, the intrinsic charge, the potential of the PL electrolyte interface, Psi0, the pK of the ionizable groups within the PLs, and the concentration of segments, n. We discuss herein that SC measurements may additionally provide information about counterion condensation.

View Article and Find Full Text PDF

Structural integrity and functional characteristics of biomacromolecules are largely defined by electrostatic forces between ionized moieties, which are often altered at interfaces. Unraveling these changes requires access to charge state and structure of surface-confined biopolymers in aqueous environments. We therefore combined electrokinetic measurements of interfacial electrical potentials with the simultaneous determination of the optical layer thickness by reflectometric interference spectroscopy.

View Article and Find Full Text PDF

Electrokinetic fingerprinting (EF) was introduced by Marlow and Rowell [Marlow BJ, Rowel RL. Langmuir 1990;6:1088] for the comprehensive characterization of charged particle surfaces. Afterwards, EF was applied by many groups for the characterization of "hard" (i.

View Article and Find Full Text PDF

During the last decades the electrokinetic theory of Smoluchowski (Z. Phys. Chem.

View Article and Find Full Text PDF

Switching from direct current (DC) to alternating current (AC) electric fields has provided substantial improvements in various instrument techniques that use electric fields for manipulating with various liquid-based systems. For example, AC fields are now used in both light scattering and electroacoustic instruments for measuring xi-potential, largely replacing more traditional microelectrophoresis techniques that use DC fields. In this paper, we suggest a novel way to make a similar transition in the area of separation techniques, capillary electrophoresis (CE) in particular.

View Article and Find Full Text PDF

In order to characterize grafted polyelectrolyte layers based on electrokinetic measurements a theory of the surface conductivity Ksigma was developed, starting from the model of thick polyelectrolyte layers with uniform segment distribution and dissociable groups with an unknown pK value. According to this model the inner part of the polyelectrolyte layer adjacent to the substrate is considered to be isopotential while the potential decay occurs in a zone near the solution side of the layer. A simple equation for the Donnan potential psiD as a function of pH, pK, electrolyte concentration C0, and volume charge density rho was obtained.

View Article and Find Full Text PDF

A theory of concentration polarization of a thin electrical double layer (DL) on a spherical particle is developed for the regime of large Peclet numbers which is realized in strong electric fields. In this regime, the concentration field arising outside DL is estimated under influence of diffusion and convection. According to the theory developed, polarization of DL at large Peclet numbers causes a change in the Stern potential, the formation of a dipole moment and the long-range potential.

View Article and Find Full Text PDF