Objectives: The approximately 250 years old remains of the Kwädąy Dän Ts'ìnchį man were found in a glacier in Canada. Studying the state of preservation of the corpse, we observed black deposits in his lung. Following this observation we wanted to determine: (1) location of the deposits in the lung tissue, (2) composition and origins of the deposits.
View Article and Find Full Text PDFCell death is the ultimate cause of productivity loss in bioreactors that are used to produce therapeutic proteins. We investigated the ability of Raman spectroscopy to detect the onset and types of cell death for Chinese Hamster Ovary (CHO) cells-the most widely used cell type for therapeutic protein production. Raman spectroscopy was used to compare apoptotic, necrotic, autophagic, and control CHO cells.
View Article and Find Full Text PDFMammalian cells contain various macromolecules that can be investigated non-invasively with Raman spectroscopy. The particular mixture of major macromolecules present in a cell being probed are reflected in the measured Raman spectra. Determining macromolecular identities and estimating their concentrations from these mixture Raman spectra can distinguish cell types and otherwise enable biological research.
View Article and Find Full Text PDFContinued advances toward cell-based therapies for human disease generate a growing need for unbiased and label-free monitoring of cellular characteristics. We used Raman microspectroscopy to characterize four important stages in the 26-day directed differentiation of human embryonic stem cells (hESCs) to insulin-positive cells. The extent to which the cells retained spectroscopic features of pluripotent cells or developed spectroscopic features suggestive of pancreatic endocrine cells, as well as assessing the homogeneity of the cell populations at these developmental stages, were of particular interest.
View Article and Find Full Text PDFCrystalline silicon, widely used in the electronic industry, is also a very popular material for calibrating Raman spectrometry instruments. Silicon chips cut or cleaved from commercially available silicon wafers are low-cost monolithic monocrystalline materials that give a strong Raman line at 521 cm(-1) with almost no background. Such chips have at least one optically flat surface and can be used in place of glass microscope slides as sample substrates that provide an internal calibration standard during Raman measurements.
View Article and Find Full Text PDFThe cell cycle is a series of integrated and coordinated physiological events that results in cell growth and replication. Besides observing the event of cell division it is not feasible to determine the cell cycle phase without fatal and/or perturbing invasive procedures such as cell staining, fixing, and/or dissociation. Raman microspectroscopy (RMS) is a chemical imaging technique that exploits molecular vibrations as a contrast mechanism; it can be applied to single living cells noninvasively to allow unperturbed analysis over time.
View Article and Find Full Text PDFThe nucleolus is a prominent subnuclear structure whose major function is the transcription and assembly of ribosome subunits. The size of the nucleolus varies with the cell cycle, proliferation rate and stress. Changes in nucleolar size, number, chemical composition, and shape can be used to characterize malignant cells.
View Article and Find Full Text PDFRaman microspectroscopy is a non-destructive, label-free optical technique that offers information-rich molecular analysis of living cells. We report here the first Raman spectral study of human induced pluripotent stem cells (hiPSCs), and compare their Raman features to those of human embryonic stem cells (hESCs) and differentiated progeny of hESCs. Raman spectra from 687 cm(-1) to 1073 cm(-1) were collected from living hiPSCs, hESCs and hESCs non-specifically differentiated for 20 days.
View Article and Find Full Text PDFThe role of autophagy in numerous physiological responses triggered by a variety of mechanisms both in states of health and disease has raised considerable interest in this cellular process. However, the current analytical tools to study autophagy are either invasive or require genetic manipulation. Raman microspectroscopy is a potentially quantitative analytical method that has been shown to be useful for the label-free, non-destructive analysis of living biological cells and tissues.
View Article and Find Full Text PDFCoherent anti-Stokes Raman scattering (CARS) with femtosecond interaction pulses has become a popular and powerful spectroscopic method. Non-resonant background is one of the most limiting factors for implementing this method more widely. We propose a new approach that suppresses the non-resonant background contribution to the measured signal in CARS spectroscopy while simultaneously yielding high spectral resolution.
View Article and Find Full Text PDFMeasuring spatial and temporal patterns of cytochemical variation in human embryonic stem cell (hESC) colonies is necessary for understanding the role of cellular communication in spontaneous differentiation, the mechanisms of biological niche creation, and structure-generating developmental processes. Such insights will ultimately facilitate directed differentiation and therewith promote advances in tissue engineering and regenerative medicine. However, the patterns of cytochemical inhomogeneities of hESC colonies are not well studied and their causes are not fully understood.
View Article and Find Full Text PDFWe present a method to perform absolute quantification of glycogen in human embryonic stem cells (hESCs) in situ based on the use of Raman microspectroscopy. The proposed quantification method was validated by comparison to a commonly used commercial glycogen assay kit. With Raman microspectroscopy, we could obtain the glycogen content of hESCs faster and apparently more accurately than with the kit.
View Article and Find Full Text PDFFemtosecond coherent anti-Stokes Raman scattering (CARS) spectroscopy offers several advantages over spontaneous Raman spectroscopy due to the inherently high sensitivity and low average power deposition in the sample. Femtosecond CARS can be implemented in a collinear pump/probe beam configuration for microspectroscopy applications and has emerged as a powerful technique for chemical imaging of biological specimens. However, one serious limitation of this approach is the presence of a high nonresonant background component that often obscures the resonant signals of interest.
View Article and Find Full Text PDFRaman microspectroscopy is an attractive approach for chemical imaging of biological specimens, including live cells, without the need for chemi-selective stains. Using a microspectrometer, near-infrared Raman spectra throughout the range 663 cm(-1) to 1220 cm(-1) were obtained from colonies of CA1 human embryonic stem cells (hESCs) and CA1 cells that had been stimulated to differentiate for 3 weeks by 10% fetal bovine serum on gelatin. Distributions and intensities of spectral bands attributed to proteins varied significantly between undifferentiated and differentiated cells.
View Article and Find Full Text PDFWe study vibrational dynamics of molecules interacting with spectrally shaped broadband laser pulses. After performing a single measurement based on cross-correlation frequency resolved optical gating of molecular vibration, complete evolution of the complex-valued quantum coherence between the vibrational states is reconstructed with variable time and frequency resolution. The ability to change the resolution in the analysis of the transient molecular dynamics without repeating the experiment or changing experimental parameters is useful in designing and understanding various schemes of controlling quantum states of molecules.
View Article and Find Full Text PDFWe propose and demonstrate a new approach to subtracting high nonresonant background in coherent anti-Stokes Raman scattering spectroscopy. The method is based on the retrieval of the spectral phase of molecular vibrations using the technique of frequency-resolved optical gating of Raman scattering. In the presence of high nonresonant background the retrieved phase corresponds directly to the background-free spectrum of the coherent Raman response.
View Article and Find Full Text PDFThe cuticular waxes on the leaves of Prunus laurocerasus are arranged in distinct layers differing in triterpenoid concentrations (Jetter et al., Plant Cell Environ 23:619-628, 2000). In addition to this transversal gradient, the lateral distribution of cuticular triterpenoids must be investigated to fully describe the spatial distribution of wax components on the leaf surfaces.
View Article and Find Full Text PDFEmbryonic stem cells (ESC), derived from preimplantation embryos, are defined by their ability to both self-renew and differentiate into all of the cells and tissues of a mature animal. Efforts to develop methods for in vitro culture of ESC for research or eventual therapeutic applications are hampered by the lack of rapid, nondestructive assays for distinguishing ESC from other (differentiated) cells within a growing culture. Coherent anti-Stokes Raman scattering (CARS) microscopy is shown here to be a sensitive and nondestructive method for identifying mouse ESC based on selective observation of specific molecular vibrations believed to be spectroscopic markers indicating the differentiated vs undifferentiated states of such cells.
View Article and Find Full Text PDFEfficient time-resolved coherent anti-Stokes Raman scattering (CARS) of atmospheric nitrogen and ethanol trapped in a nanoporous silica aerogel matrix is demonstrated. Silica aerogel hosts are attractive for analytical CARS spectroscopy due to their high porosity/low density, low refractive index, and low scattering cross-section. Differences between the resonant and nonresonant parts of the nonlinear optical susceptibilities lead to much longer relaxation times for analytes compared to the matrix.
View Article and Find Full Text PDFThe authors propose a new approach to vibration spectroscopy based on the coherent anti-Stokes Raman scattering of broadband ultrashort laser pulses. The proposed method reveals both the amplitude and the phase of molecular vibrations by utilizing the cross-correlation frequency resolved optical gating (XFROG) technique. The spectrum of the anti-Stokes pulse is measured as a function of the time delay between the laser-induced molecular vibrations and a well characterized broadband femtosecond probe pulse.
View Article and Find Full Text PDFWe have implemented a new Raman fiber-optic probe design based on a hollow-core photonic-crystal excitation fiber surrounded by silica-core collection fibers. The photonic-crystal fiber offers low attenuation at the pump radiation wavelength, mechanical flexibility, high radiation stability, and low background noise. Because the excitation beam is transmitted through air inside the hollow-core fiber, silica Raman scattering is much reduced, improving the quality of the spectra obtained using probes of this design.
View Article and Find Full Text PDFHollow-core photonic-crystal fibres (PCFs) for the delivery of high-fluence laser radiation capable of ablating tooth enamel are developed. Sequences of picosecond pulses of 1.06 microm Nd:YAG-laser radiation with a total energy of about 2 mJ are transmitted through a hollow-core photonic-crystal fibre with a core diameter of approximately 14 microm and are focused on a tooth surface in vitro to ablate dental tissue.
View Article and Find Full Text PDFSequences of picosecond pulses of 1.06-microm Nd:YAG laser radiation with a total energy of approximately 2 mJ are transmitted through a hollow-core photonic-crystal fiber with a core diameter of approximately 14 microm and are focused onto a tooth's surface in vitro to ablate dental tissue. The hollow-core photonic-crystal fiber is shown to support the single-fundamental-mode regime for 1.
View Article and Find Full Text PDF