Phys Chem Chem Phys
December 2021
An electrochemical amperometric ethylene sensor with solid polymer electrolyte (SPE) and semi-planar three electrode topology involving a working, pseudoreference, and counter electrode is presented. The polymer electrolyte is based on the ionic liquid 1-butyl 3-methylimidazolium bis(trifluoromethylsulfonyl)imide [BMIM][NTf] immobilized in a poly(vinylidene fluoride) matrix. An innovative aerosol-jet printing technique was used to deposit the gold working electrode (WE) on the solid polymer electrolyte layer to make a unique electrochemical active SPE/WE interface.
View Article and Find Full Text PDFTemperature-modulated space-charge-limited-current spectroscopy (TMSCLC) is applied to quantitatively evaluate the density of trap states in the band-gap with high energy resolution of semiconducting hybrid lead halide perovskite single crystals. Interestingly multicomponent deep trap states were observed in the pure perovskite crystals, which assumingly caused by the formation of nanodomains due to the presence of the mobile species in the perovskites.
View Article and Find Full Text PDFA systematic study was carried out to investigate the effect of ionic liquid in solid polymer electrolyte (SPE) and its layer morphology on the characteristics of an electrochemical amperometric nitrogen dioxide sensor. Five different ionic liquids were immobilized into a solid polymer electrolyte and key sensor parameters (sensitivity, response/recovery times, hysteresis and limit of detection) were characterized. The study revealed that the sensor based on 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIM][N(Tf)2]) showed the best sensitivity, fast response/recovery times, and low sensor response hysteresis.
View Article and Find Full Text PDFThis paper presents a theoretical approach to the evaluation of polaron binding energy in polymers. Quantum chemical calculations were performed on a model polymer, poly[methyl(phenyl)silylene], employing the B3LYP and CAM-B3LYP method. The polaron binding energy consists of two terms: the molecular deformation energy and electron-phonon term.
View Article and Find Full Text PDFTime-resolved terahertz spectroscopy and combination of quantum chemistry modeling and molecular dynamics simulations were used for the determination of charge carrier mobility in poly[methyl(phenyl)silylene]. Using time-resolved THz spectroscopy we established the on-chain charge carrier drift mobility in PMPSi as 0.02 cm(2) V(-1) s(-1).
View Article and Find Full Text PDFThe conductivity of DNA covalently bonded to a gold surface was studied by means of the STM technique. Various single- and double-stranded 32-nucleotide-long DNA sequences were measured under ambient conditions so as to provide a better understanding of the complex process of charge-carrier transport in natural as well as chemically modified DNA molecules. The investigations focused on the role of several features of DNA structure, namely the role of the negative charge at the backbone phosphate group and the related complex effects of counterions, and of the stacking interactions between the bases in Watson-Crick and other types of base pairs.
View Article and Find Full Text PDF