Publications by authors named "Stanislav Lukashenko"

The acquisition of reliable knowledge about the mechanism of short laser pulse interactions with semiconductor materials is an important step for high-tech technologies towards the development of new electronic devices, the functionalization of material surfaces with predesigned optical properties, and the manufacturing of nanorobots (such as nanoparticles) for bio-medical applications. The laser-induced nanostructuring of semiconductors, however, is a complex phenomenon with several interplaying processes occurring on a wide spatial and temporal scale. In this work, we apply the atomistic-continuum approach for modeling the interaction of an fs-laser pulse with a semiconductor target, using monolithic crystalline silicon (c-Si) and porous silicon (Si).

View Article and Find Full Text PDF

The production of non-toxic and homogeneous colloidal solutions of nanoparticles (NPs) for biomedical applications is of extreme importance nowadays. Among the various methods for generation of NPs, pulsed laser ablation in liquids (PLAL) has proven itself as a powerful and efficient tool in biomedical fields, allowing chemically pure silicon nanoparticles to be obtained. For example, laser-synthesized silicon nanoparticles (Si NPs) are widely used as contrast agents for bio visualization, as effective sensitizers of radiofrequency hyperthermia for cancer theranostics, in photodynamic therapy, as carriers of therapeutic radionuclides in nuclear nanomedicine, etc.

View Article and Find Full Text PDF

The rich potential of the microwave experiments for characterization and optimization of optical devices is discussed. While the control of the light fields together with their spatial mapping at the nanoscale is still laborious and not always clear, the microwave setup allows to measure both amplitude and phase of initially determined magnetic and electric field components without significant perturbation of the near-field. As an example, the electromagnetic properties of an add-drop filter, which became a well-known workhorse of the photonics, is experimentally studied with the aid of transmission spectroscopy measurements in optical and microwave ranges and through direct mapping of the near fields at microwave frequencies.

View Article and Find Full Text PDF

We study experimentally a fine structure of the optical Laue diffraction from two-dimensional periodic photonic lattices. The periodic photonic lattices with the C4v square symmetry, orthogonal C2v symmetry, and hexagonal C6v symmetry are composed of submicron dielectric elements fabricated by the direct laser writing technique. We observe surprisingly strong optical diffraction from a finite number of elements that provides an excellent tool to determine not only the symmetry but also exact number of particles in the finite-length structure and the sample shape.

View Article and Find Full Text PDF