Distinguishing between alcohol-associated hepatitis (AH) and alcohol-associated cirrhosis (AC) remains a diagnostic challenge. In this study, we used machine learning with transcriptomics and proteomics data from liver tissue and peripheral mononuclear blood cells (PBMCs) to classify patients with alcohol-associated liver disease. The conditions in the study were AH, AC, and healthy controls.
View Article and Find Full Text PDFBackground & Aims: Liver disease carries significant healthcare burden and frequently requires a combination of blood tests, imaging, and invasive liver biopsy to diagnose. Distinguishing between inflammatory liver diseases, which may have similar clinical presentations, is particularly challenging. In this study, we implemented a machine learning pipeline for the identification of diagnostic gene expression biomarkers across several alcohol-associated and non-alcohol-associated liver diseases, using either liver tissue or blood-based samples.
View Article and Find Full Text PDFBackground: Researchers commonly analyze lists of differentially expressed entities (DEEs), such as differentially expressed genes (DEGs), differentially expressed proteins (DEPs), and differentially methylated positions/regions (DMPs/DMRs), across multiple pairwise comparisons. Large biological studies can involve multiple conditions, tissues, and timepoints that result in dozens of pairwise comparisons. Manually filtering and comparing lists of DEEs across multiple pairwise comparisons, typically done by writing custom code, is a cumbersome task that can be streamlined and standardized.
View Article and Find Full Text PDFThe diversity of intrinsic dynamics observed in neurons may enhance the computations implemented in the circuit by enriching network-level emergent properties such as synchronization and phase locking. Large-scale spiking network models of entire brain regions offer a platform to test theories of neural computation and cognitive function, providing useful insights on information processing in the nervous system. However, a systematic in-depth investigation requires network simulations to capture the biological intrinsic diversity of individual neurons at a sufficient level of accuracy.
View Article and Find Full Text PDF